Numerical methods and programming
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Num. Meth. Prog.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Numerical methods and programming, 2003, Volume 4, Issue 3, Pages 28–33 (Mi vmp736)  

Geometric interpretation of propositional formulas

V. V. Suvorov

Lomonosov Moscow State University, Research Computing Center
Abstract: We consider a method for logical analysis based on geometric interpretation of propositional formulas. A logical formula is represented as a unit hypercube in an orthogonal basis of dimension equal to the locality of the formula. It is shown that the analysis of cube intersections in accordance with simple visual criteria allows one to formulate logical axioms. The possibility to construct programming tools for estimating the truth of formulas according to visual perceptions is discussed.
Keywords: propositional formulas, geometric interpretation, logical analysis, programming tools, logical axioms.
UDC: 510.662
Language: Russian
Citation: V. V. Suvorov, “Geometric interpretation of propositional formulas”, Num. Meth. Prog., 4:3 (2003), 28–33
Citation in format AMSBIB
\Bibitem{Suv03}
\by V.~V.~Suvorov
\paper Geometric interpretation of propositional formulas
\jour Num. Meth. Prog.
\yr 2003
\vol 4
\issue 3
\pages 28--33
\mathnet{http://mi.mathnet.ru/vmp736}
Linking options:
  • https://www.mathnet.ru/eng/vmp736
  • https://www.mathnet.ru/eng/vmp/v4/i3/p28
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Numerical methods and programming
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024