Numerical methods and programming
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Num. Meth. Prog.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Numerical methods and programming, 2006, Volume 7, Issue 2, Pages 190–194 (Mi vmp592)  

Вычислительные методы и приложения

Computing quasi-differentials and exhausters by function values

M. Yu. Andramonov

N. G. Chebotarev Research Institute of Mathematics and Mechanics, Kazan State University
Abstract: A general method for computing quasi-differentials and co-differentials is proposed; the method is based on their approximation by polygons. The accuracy of approximation depends on the numbers of vectors for which the directional derivative is computed. The algorithm can be used for nonsmooth optimization, in particular, in Newton's method and the steepest descent method for minimizing complicated non-differentiable functions.
Keywords: numerical methods of optimization, nonsmooth optimization, quasi-differentials, gradient methods, exhausters.
Document Type: Article
Language: Russian
Citation: M. Yu. Andramonov, “Computing quasi-differentials and exhausters by function values”, Num. Meth. Prog., 7:2 (2006), 190–194
Citation in format AMSBIB
\Bibitem{And06}
\by M.~Yu.~Andramonov
\paper Computing quasi-differentials and exhausters by function values
\jour Num. Meth. Prog.
\yr 2006
\vol 7
\issue 2
\pages 190--194
\mathnet{http://mi.mathnet.ru/vmp592}
Linking options:
  • https://www.mathnet.ru/eng/vmp592
  • https://www.mathnet.ru/eng/vmp/v7/i2/p190
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Numerical methods and programming
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024