Numerical methods and programming
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Num. Meth. Prog.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Numerical methods and programming, 2012, Volume 13, Issue 1, Pages 139–148 (Mi vmp15)  

Вычислительные методы и приложения

On approximate open boundary conditions and their performance over long time intervals

A. R. Maikov

M. V. Lomonosov Moscow State University, Faculty of Physics
Abstract: The implementation of approximate open boundary conditions for the Klein–Gordon equation is discussed for the case of an initial-boundary problem on the quarter plane. The proposed approach is proved to provide high accuracy, however long the time interval of numerical modeling. A number of numerical experiments illustrate the effectiveness of this approach.
Keywords: Klein–Gordon equation; initial boundary value problem on an unbounded domain; open boundary conditions; time-domain radiation boundary conditions.
Received: 26.12.2011
Document Type: Article
UDC: 519.6
Language: Russian
Citation: A. R. Maikov, “On approximate open boundary conditions and their performance over long time intervals”, Num. Meth. Prog., 13:1 (2012), 139–148
Citation in format AMSBIB
\Bibitem{Mai12}
\by A.~R.~Maikov
\paper On approximate open boundary conditions and their performance over long time intervals
\jour Num. Meth. Prog.
\yr 2012
\vol 13
\issue 1
\pages 139--148
\mathnet{http://mi.mathnet.ru/vmp15}
Linking options:
  • https://www.mathnet.ru/eng/vmp15
  • https://www.mathnet.ru/eng/vmp/v13/i1/p139
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Numerical methods and programming
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024