Numerical methods and programming
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Num. Meth. Prog.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Numerical methods and programming, 2023, Volume 24, Issue 2, Pages 195–212
DOI: https://doi.org/10.26089/NumMet.v24r215
(Mi vmp1084)
 

Methods and algorithms of computational mathematics and their applications

Training data set construction based on the Hausdorff metric for numerical dispersion mitigation neural network in seismic modelling

K. A. Gadylshinaa, D. M. Vishnevskiia, K. G. Gadylshinb, V. V. Lisitsaa

a Trofimuk Institute of Petroleum Geology and Geophysics of SB RAS
b LLC RN-BashNIPIneft
Abstract: The article outlines a strategy for constructing a training data set for a numerical dispersion mitigation network (NDM-net), consisting in the calculation of the full set of seismograms by the finite difference method on a coarse grid and the calculation of the training sample using a fine grid. The training dataset is a small set of seismograms with a certain spatial distribution of wave field sources. After training, the NDM-net allows approximating low-quality coarse-grid seismograms into seismograms with a smaller sampling step. Optimization of the process of constructing a representative training dataset of seismograms is based on minimizing the Hausdorff metric between the training sample and the full set of seismograms. The use of the NDM-net makes it possible to reduce time costs when calculating wave fields on a fine grid.
Keywords: seismograms numerical modelling, numerical dispersion, deep learning, teaching dataset creation.
Received: 28.11.2022
Document Type: Article
UDC: 550.34.013.4
Language: Russian
Citation: K. A. Gadylshina, D. M. Vishnevskii, K. G. Gadylshin, V. V. Lisitsa, “Training data set construction based on the Hausdorff metric for numerical dispersion mitigation neural network in seismic modelling”, Num. Meth. Prog., 24:2 (2023), 195–212
Citation in format AMSBIB
\Bibitem{GadVisGad23}
\by K.~A.~Gadylshina, D.~M.~Vishnevskii, K.~G.~Gadylshin, V.~V.~Lisitsa
\paper Training data set construction based on the Hausdorff metric for numerical dispersion mitigation neural network in seismic modelling
\jour Num. Meth. Prog.
\yr 2023
\vol 24
\issue 2
\pages 195--212
\mathnet{http://mi.mathnet.ru/vmp1084}
\crossref{https://doi.org/10.26089/NumMet.v24r215}
Linking options:
  • https://www.mathnet.ru/eng/vmp1084
  • https://www.mathnet.ru/eng/vmp/v24/i2/p195
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Numerical methods and programming
    Statistics & downloads:
    Abstract page:62
    Full-text PDF :33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024