Numerical methods and programming
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Num. Meth. Prog.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Numerical methods and programming, 2020, Volume 21, Issue 2, Pages 164–171
DOI: https://doi.org/10.26089/NumMet.v21r214
(Mi vmp1000)
 

Computing the Minkowskii functionals for four-dimensional digital images

O. A. Bogoyavlenskaya

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Abstract: The Minkowskii functionals are important for studying the morphology of porous media. This paper is devoted to constructing an algorithm for computing the Minkowskii functionals for four-dimensional digital images used to describe the dynamics of porous media. This algorithm is implemented as a software package.
Keywords: computing geometry; Minkowskii functionals; morphology of porous media.
Received: 27.06.2020
UDC: 519.6
Language: Russian
Citation: O. A. Bogoyavlenskaya, “Computing the Minkowskii functionals for four-dimensional digital images”, Num. Meth. Prog., 21:2 (2020), 164–171
Citation in format AMSBIB
\Bibitem{Bog20}
\by O.~A.~Bogoyavlenskaya
\paper Computing the Minkowskii functionals for four-dimensional digital images
\jour Num. Meth. Prog.
\yr 2020
\vol 21
\issue 2
\pages 164--171
\mathnet{http://mi.mathnet.ru/vmp1000}
\crossref{https://doi.org/10.26089/NumMet.v21r214}
Linking options:
  • https://www.mathnet.ru/eng/vmp1000
  • https://www.mathnet.ru/eng/vmp/v21/i2/p164
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Numerical methods and programming
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025