Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2024, Volume 26, Number 3, Pages 47–55
DOI: https://doi.org/10.46698/x0578-3097-1488-l
(Mi vmj920)
 

On automorphisms of a graph with an intersection array $\{44,30,9;1,5,36\}$

M. M. Isakovaa, A. A. Makhnevb, Mingzhu Chenc

a Kabardino-Balkarian State University named after H. M. Berbekov, 173 Chernyshevsky St., Nalchik 360004, Russia
b N. N. Krasovskii Institute of Mathematics and Mechanics, 16 S. Kovalevskaya St., Ekaterinburg 620990, Russia
c Hainan University, 58 Renmin Ave., Haikou 570228, China
References:
Abstract: For the set $X$ automorphisms of the graph $\Gamma$ let ${\rm Fix}(X)$ be a set of all vertices of $\Gamma$ fixed by any automorphism from $X$. There are $7$ feasible intersection arrays of distance regular graphs with diameter $3$ and degree $44$. Early it was proved that for fifth of them graphs do not exist. In this paper it is founded possible automorphisms of distance regular graph with intersection array $\{44,30,9;1,5,36\}$. The proof of the theorem is based on Higman’s method of working with automorphisms of a distance regular graph. The consequence of the main result is is the following: Let $\Gamma$ be a distance regular graph with intersection array $\{44,30,9;1,5,36\}$ and the group $G={\rm Aut}(\Gamma)$ acts vertex-transitively; then $G$ acts intransitively on the set arcs of $\Gamma$.
Key words: strongly regular graph, fixed point subgraph, distance regular graph, automorphism.
Funding agency Grant number
National Natural Science Foundation of China 12171126
Received: 26.06.2024
Document Type: Article
UDC: 519.17
MSC: 05B05, 20D05
Language: Russian
Citation: M. M. Isakova, A. A. Makhnev, Mingzhu Chen, “On automorphisms of a graph with an intersection array $\{44,30,9;1,5,36\}$”, Vladikavkaz. Mat. Zh., 26:3 (2024), 47–55
Citation in format AMSBIB
\Bibitem{IsaMakChe24}
\by M.~M.~Isakova, A.~A.~Makhnev, Mingzhu~Chen
\paper On automorphisms of a graph with an intersection array $\{44,30,9;1,5,36\}$
\jour Vladikavkaz. Mat. Zh.
\yr 2024
\vol 26
\issue 3
\pages 47--55
\mathnet{http://mi.mathnet.ru/vmj920}
\crossref{https://doi.org/10.46698/x0578-3097-1488-l}
Linking options:
  • https://www.mathnet.ru/eng/vmj920
  • https://www.mathnet.ru/eng/vmj/v26/i3/p47
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024