Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2024, Volume 26, Number 2, Pages 70–81
DOI: https://doi.org/10.46698/q9607-8404-0437-r
(Mi vmj905)
 

Hardy type inequalities in classical and grand Lebesgue spaces $L_{p)}$, $0<p\leqslant 1$, for quasi-monotone functions

A. Ouardani, A. Senouci

University of Tiaret, Department of Mathematics, Zaârora, Tiaret 14000, Algeria
References:
Abstract: In 2020 Rovshan A. Bandaliyev et al. proved the boundedness of Hardy operator for monotone functions in grand Lebesgue spaces $L_{p)} (0,1)$, $0<p\leqslant 1$. In particular,they established similar results for the Hardy operator in weighted classical Lebesgue spaces. Moreover, it is proved that the grand Lebesgue space $L_{p) } (0,1)$ is a quasi-Banach function space. In this work, we are interested in Hardy inequalities applied to quasi-monotonic functions in classical Lebesgue spaces and grand Lebesgue spaces. we establish the boundedness of Hardy operator for quasi-monotone functions in grand Lebesgue spaces $L_{p)}$, $w(0,1)$ $0<p\leqslant 1$. In addition some integral inequalities for the Hardy operator are proved in classical weighted Lebesgue spaces $L_{p,w} (0,1)$, $0<p<1$ for quasi-monotone functions. All inequalities are proved with sharp constants. Some results of Rovshan A. Bandaliyev et al. are deduced as particular cases. Also other estimates are obtained in classical Lebesgue spaces for Hardy's operator and its dual.
Key words: inequalities, quasi-monotone functions, Hardy operators, grand Lebesgue spaces, weighted Lebesgue spaces.
Funding agency Grant number
University of Tiaret COOL03UN140120180001
This work is supported by university of Tiaret, PRFU project, code: COOL03UN140120180001.
Received: 17.10.2023
Document Type: Article
UDC: 517.9
MSC: 26D10, 26D15
Language: English
Citation: A. Ouardani, A. Senouci, “Hardy type inequalities in classical and grand Lebesgue spaces $L_{p)}$, $0<p\leqslant 1$, for quasi-monotone functions”, Vladikavkaz. Mat. Zh., 26:2 (2024), 70–81
Citation in format AMSBIB
\Bibitem{OuaSen24}
\by A.~Ouardani, A.~Senouci
\paper Hardy type inequalities in classical and grand Lebesgue spaces $L_{p)}$, $0<p\leqslant 1$, for quasi-monotone functions
\jour Vladikavkaz. Mat. Zh.
\yr 2024
\vol 26
\issue 2
\pages 70--81
\mathnet{http://mi.mathnet.ru/vmj905}
\crossref{https://doi.org/10.46698/q9607-8404-0437-r}
Linking options:
  • https://www.mathnet.ru/eng/vmj905
  • https://www.mathnet.ru/eng/vmj/v26/i2/p70
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:24
    Full-text PDF :9
    References:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024