Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2024, Volume 26, Number 1, Pages 100–105
DOI: https://doi.org/10.46698/b0710-6173-7852-i
(Mi vmj900)
 

On overgroups of a cycle rich in transvections

R. Y. Dryaeva

Северо-Осетинский государственный университет им. К. Л. Хетагурова, Россия, 362025, Владикавказ, ул. Ватутина, 46
References:
Abstract: A subgroup $H$ of the general linear group $G=GL(n,R)$ of order $n$ over the ring $R$ is said to be rich in transvections if it contains elementary transvections $t_{ij}(\alpha)=e+\alpha e_{ij}$ at all positions $(i, j)$, $i\neq j$, for some $\alpha\in R$, $\alpha\neq 0$. This concept was introduced by Z. I. Borevich, considering the problem of describing subgroups of linear groups containing fixed subgroup. It is known that the overgroup of a nonsplit maximal torus containing an elementary transvection at some one position, is rich in transvections. For a commutative domain $R$ with unit and a cycle $\pi=(1 \ 2 \ \ldots\ n)\in S_n$ of length $n$, the following proposition is proved. A subgroup $\langle t_{ij}(\alpha), (\pi) \rangle$ of the general linear group $GL(n, R)$ generated by the permutation matrix $(\pi)$ and the transvection $t_{ij}(\alpha)$ is rich in transvections if and only if the numbers $i-j$ and $n$ are coprime. A system of additive subgroups $\sigma=(\sigma_{ij})$, $1\leq i,j\leq n$, of a ring $R$ is called a net (carpet) over a ring $R$ of order $n$, if $\sigma_{ir} \sigma_{rj} \subseteq{\sigma_{ij}} $ for all values of the indices $i$, $r$, $j$ (Z. I. Borevich, V. M. Levchuk). The same system, but without the diagonal, called elementary net. We call a complete or elementary net $\sigma = (\sigma_{ij})$ irreducible if all additive subgroups of $\sigma_{ij}$ are nonzero. In this note we define weakly saturated nets that play an important role in the proof of the main result.
Key words: subgroups rich in transvections, transvection, cycle, net, net group.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2024-1447
Received: 15.11.2023
Document Type: Article
UDC: 512.54, 512.74
MSC: 20G15
Language: Russian
Citation: R. Y. Dryaeva, “On overgroups of a cycle rich in transvections”, Vladikavkaz. Mat. Zh., 26:1 (2024), 100–105
Citation in format AMSBIB
\Bibitem{Dry24}
\by R.~Y.~Dryaeva
\paper On overgroups of a cycle rich in transvections
\jour Vladikavkaz. Mat. Zh.
\yr 2024
\vol 26
\issue 1
\pages 100--105
\mathnet{http://mi.mathnet.ru/vmj900}
\crossref{https://doi.org/10.46698/b0710-6173-7852-i}
Linking options:
  • https://www.mathnet.ru/eng/vmj900
  • https://www.mathnet.ru/eng/vmj/v26/i1/p100
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:53
    Full-text PDF :23
    References:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024