Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2007, Volume 9, Number 2, Pages 3–8 (Mi vmj90)  

This article is cited in 2 scientific papers (total in 2 papers)

On a decomposition equality in modular group rings

P. V. Danchev

Plovdiv State University «Paissii Hilendarski», Plovdiv, Bulgaria
Full-text PDF (131 kB) Citations (2)
References:
Abstract: Let $G$ be an abelian group such that $A\le G$ with $p$-component $A_p$ and $B\le G$, and let $R$ be a commutative ring with 1 of prime characteristic $p$ with nil-radical $N(R)$. It is proved that if $A_p\not\subseteq B_p$ or $N(R)\ne 0$, then $S(RG)=S(RA)(1+I_p(RG;B))$ $\iff$ $G=AB$ and $G_p=A_pB_p$. In particular, if $A_p\ne 1$ or $N(R)\ne 0$, then $S(RG)=S(RA)\times (1+I_p(RG;B))$ $\iff$ $G=A\times B$. So, the question concerning the validity of this formula is completely exhausted. The main statement encompasses both the results of this type established by the author in (Hokkaido Math. J., 2000) and (Miskolc Math. Notes, 2005). We also point out and eliminate in a concrete situation an error in the proof of a statement due to T. Zh. Mollov on a decomposition formula in commutative modular group rings (Proceedings of the Plovdiv University-Math., 1973).
Key words: direct factors, decompositions, normed unit groups, homomorphisms.
Received: 03.07.2006
Bibliographic databases:
Document Type: Article
UDC: 512.742
Language: English
Citation: P. V. Danchev, “On a decomposition equality in modular group rings”, Vladikavkaz. Mat. Zh., 9:2 (2007), 3–8
Citation in format AMSBIB
\Bibitem{Dan07}
\by P.~V.~Danchev
\paper On a decomposition equality in modular group rings
\jour Vladikavkaz. Mat. Zh.
\yr 2007
\vol 9
\issue 2
\pages 3--8
\mathnet{http://mi.mathnet.ru/vmj90}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2434626}
Linking options:
  • https://www.mathnet.ru/eng/vmj90
  • https://www.mathnet.ru/eng/vmj/v9/i2/p3
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:265
    Full-text PDF :120
    References:54
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024