Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2023, Volume 25, Number 4, Pages 50–57
DOI: https://doi.org/10.46698/q1367-9905-0509-t
(Mi vmj883)
 

A priori estimates of the positive real or imaginary part of a generalized analytic function

S. B. Klimentovab

a Southern Mathematical Institute VSC RAS, 53 Vatutina St., Vladikavkaz 362025, Russia
b South Federal University, 8 a Milchakova St., Rostov-on-Don 344090, Russia
References:
Abstract: We denote by $D=D_z=\{z : |z|<1\}$ the unit disk in the complex $z$-plane, $\Gamma= \partial D$. The following property of harmonic functions is well-known. If a real valued function $U(z)\in C(\overline D)$ is harmonic in $D$, $U(z) |_{z\in \Gamma} \geq K = {\rm const}>0$, then $U(z) \geq K$ for all $ z \in \overline D$. The subject of this work is the generalization of this property to the real (imaginary) part of the solution to the elliptic system on $D$: $\partial_{\bar z} w-q_1(z) \partial_z w - q_2(z) \partial_{\bar z} \overline w +A(z)w+B(z) \overline w=0,$ where $w=w(z)=u(z)+iv(z)$ is a desired complex function. $\partial _{\bar z}=\frac12 \big(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y}\big)$, $\partial _{z}=\frac12 \big(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y}\big)$, are derivatives in Sobolev sense; $q_1(z)$ and $q_2(z)$ are given measurable complex functions satisfying the uniform ellipticity condition of the system $|q_1(z)| + |q_2(z)| \leq q_0 = {\rm const}<1$, $ z\in \overline D$; $A(z), B(z)\in L_p(\overline D)$, $p>2$, also are given complex functions.
Key words: first-order elliptic system, generalized analytic function.
Received: 08.11.2022
Document Type: Article
UDC: 517.518.234+517.548.3
MSC: 30G30
Language: Russian
Citation: S. B. Klimentov, “A priori estimates of the positive real or imaginary part of a generalized analytic function”, Vladikavkaz. Mat. Zh., 25:4 (2023), 50–57
Citation in format AMSBIB
\Bibitem{Kli23}
\by S.~B.~Klimentov
\paper A priori estimates of the positive real or imaginary part of a generalized analytic function
\jour Vladikavkaz. Mat. Zh.
\yr 2023
\vol 25
\issue 4
\pages 50--57
\mathnet{http://mi.mathnet.ru/vmj883}
\crossref{https://doi.org/10.46698/q1367-9905-0509-t}
Linking options:
  • https://www.mathnet.ru/eng/vmj883
  • https://www.mathnet.ru/eng/vmj/v25/i4/p50
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:47
    Full-text PDF :25
    References:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024