Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2023, Volume 25, Number 3, Pages 5–14
DOI: https://doi.org/10.46698/f6017-0875-0171-y
(Mi vmj868)
 

On conformal factor in the conformal Killing equation on the $2$-symmetric five-dimensional indecomposable Lorentzian manifold

T. A. Andreeva, D. N. Oskorbin, E. D. Rodionov

Altai State University, 61 Lenin Ave., Barnaul 656049, Russia
References:
Abstract: Conformally Killing vector fields are a natural generalization of Killing vector fields and play an important role in the study of the group of conformal transformations of a manifold, Ricci flows on a manifold, and the theory of Ricci solitons. Pseudo-Riemannian symmetric spaces of order $k$, where $k \geq 2$, arise in the study of pseudo-Riemannian geometry and in physics. At present, they have been investigated in cases $k=2, 3$ by D. V. Alekseevsky, A. S. Galaev and others. In the case of low dimensions, these spaces and Killing vector fields on them were studied by D. N. Oskorbin, E. D. Rodionov, and I. V. Ernst. Ricci solitons are a generalization of Einstein's metrics on (pseudo) Riemannian manifolds, and their equation has been studied on various classes of manifolds by many mathematicians. In particular, D. N. Oskorbin and E. D. Rodionov found a general solution of the Ricci soliton equation on $2$-symmetric Lorentzian manifolds of low dimension, and proved the local solvability of this equation in the class of $3$-symmetric Lorentzian manifolds. For a single Einstein constant in the Ricci soliton equation the Killing vector fields make it possible to find the general solution of the Ricci soliton equation corresponding to the given constant. However, for different values of the Einstein constant, conformally Killing vector fields play the role of Killing fields. Therefore, there is a need to study them. In this paper, we investigate the conformal analogue of the Killing equation on five-dimensional $2$-symmetric indecomposable Lorentzian manifolds, and investigate the properties of the conformal factor of the conformal analogue of the Killing equation on them. Nontrivial examples of conformally Killing vector fields with a variable conformal factor are constructed.
Key words: conformal Killing vector fields, Lorentzian manifolds, $k$-symmetric spaces, Killing vector fields, Ricci solitons.
Funding agency Grant number
Russian Science Foundation 22-21-00111
Received: 29.04.2022
Document Type: Article
UDC: 514.764.227
MSC: 53B30
Language: Russian
Citation: T. A. Andreeva, D. N. Oskorbin, E. D. Rodionov, “On conformal factor in the conformal Killing equation on the $2$-symmetric five-dimensional indecomposable Lorentzian manifold”, Vladikavkaz. Mat. Zh., 25:3 (2023), 5–14
Citation in format AMSBIB
\Bibitem{AndOskRod23}
\by T.~A.~Andreeva, D.~N.~Oskorbin, E.~D.~Rodionov
\paper On conformal factor in the conformal Killing equation on the~$2$-symmetric five-dimensional indecomposable Lorentzian manifold
\jour Vladikavkaz. Mat. Zh.
\yr 2023
\vol 25
\issue 3
\pages 5--14
\mathnet{http://mi.mathnet.ru/vmj868}
\crossref{https://doi.org/10.46698/f6017-0875-0171-y}
Linking options:
  • https://www.mathnet.ru/eng/vmj868
  • https://www.mathnet.ru/eng/vmj/v25/i3/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:76
    Full-text PDF :27
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024