Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2023, Volume 25, Number 2, Pages 103–116
DOI: https://doi.org/10.46698/i8046-3247-2616-q
(Mi vmj863)
 

Positive isometries of Orlicz–Kantorovich spaces

B. S. Zakirova, V. I. Chilinb

a Tashkent State Transport University, 1 Temiryulchilar St., Tashkent 100167, Uzbekistan
b National University of Uzbekistan, Vuzgorodok, Tashkent 100174, Uzbekistan
References:
Abstract: Let $B$ be a complete Boolean algebra, $Q(B)$ the Stone compact of $B$, and let $C_\infty (Q(B))$ be the commutative unital algebra of all continuous functions $x: Q(B) \to [-\infty, +\infty]$, assuming possibly the values $\pm\infty$ on nowhere-dense subsets of $Q(B)$. We consider the Orlicz–Kantorovich spaces ${(L_{\Phi}(B,m), \|\cdot\|_{\Phi})\subset C_\infty (Q(B))}$ with the Luxembourg norm associated with an Orlicz function $\Phi$ and a vector-valued measure $m$, with values in the algebra of real-valued measurable functions. It is shown, that in the case when $\Phi$ satisfies the $(\Delta_2)$-condition, the norm $\|\cdot\|_{\Phi}$ is order continuous, that is, $\|x_n\|_{\Phi}\downarrow \mathbf{0}$ for every sequence $\{x_n\}\subset L_{\Phi}(B,m)$ with $x_n \downarrow \mathbf{0}$. Moreover, in this case, the norm $\|\cdot\|_{\Phi}$ is strictly monotone, that is, the conditions $|x|\lneqq |y|$, $x, y \in L_{\Phi}(B,m)$, imply $\|x\|_{\Phi} \lneqq \|y\|_{\Phi}$. In addition, for positive elements $x, y \in L_{\Phi}(B,m)$, the equality $\|x+y\|_{\Phi}=\|x-y\|_{\Phi}$ is valid if and only if $x\cdot y = 0$. Using these properties of the Luxembourg norm, we prove that for any positive linear isometry $V: L_{\Phi}(B,m) \to L_{\Phi}(B,m)$ there exists an injective normal homomorphisms $T : C_\infty (Q(B)) \to C_\infty (Q(B))$ and a positive element $y \in L_{\Phi}(B,m)$ such that $V(x ) =y\cdot T(x)$ for all $x\in L_{\Phi}(B,m)$.
Key words: the Banach–Kantorovich space, the Orlicz function, vector-valued measure, positive isometry, normal homomorphism.
Received: 11.05.2022
Document Type: Article
UDC: 517.98
Language: English
Citation: B. S. Zakirov, V. I. Chilin, “Positive isometries of Orlicz–Kantorovich spaces”, Vladikavkaz. Mat. Zh., 25:2 (2023), 103–116
Citation in format AMSBIB
\Bibitem{ZakChi23}
\by B.~S.~Zakirov, V.~I.~Chilin
\paper Positive isometries of Orlicz--Kantorovich spaces
\jour Vladikavkaz. Mat. Zh.
\yr 2023
\vol 25
\issue 2
\pages 103--116
\mathnet{http://mi.mathnet.ru/vmj863}
\crossref{https://doi.org/10.46698/i8046-3247-2616-q}
Linking options:
  • https://www.mathnet.ru/eng/vmj863
  • https://www.mathnet.ru/eng/vmj/v25/i2/p103
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:84
    Full-text PDF :26
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024