Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2023, Volume 25, Number 1, Pages 105–111
DOI: https://doi.org/10.46698/m0485-4484-9134-k
(Mi vmj851)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the best polynomials approximation of segment functions

A. Yu. Tryninab

a Saratov State University, 83 Astrakhanskaya St., Saratov 410012, Russia
b Moscow Centre for Fundamental and Applied Mathematics, Lomonosov Moscow State University, 1 Leninskie Gory, Moscow 119991, Russia
References:
Abstract: An algorithm for finding the best approximation polynomial for a continuous multivalued segment function defined on a set of segments $X$ is proposed, where $ X=\big(\bigcup_{j_{1}=0}^{n_1}[a_{j_1},b_{j_1}]\big)\cup\big(\bigcup_{k=0}^n x_k\big)$ with $\big(\bigcup_{j_{1}=0}^{n_1}[a_{j_1},b_{j_1}]\big)\cap \big(\bigcup_{k=0}^n x_k\big)=\varnothing$. The disjoint segments $[a_{j_1},b_{j_1}]$ and points $x_k$ belong to a bounded segment $[A,B]\subset\mathbb{R}$. We assume that the functions $f_{1}$ and $f_{2}$ are continuous on the set $X$, and everywhere on $X$ the value of the function $f_{1}(x)$ does not exceed the value of the function $ f_{2} (x)$. The operator assigning to each $x\in X$ the segment $[(x,f_{1}(x)),(x,f_{2}(x))]$ will be called the segments function ${\mathcal F } (x)$ defined on $X$. Since the functions $f_{1}$ and $f_{2}$ are continuous, the segments function ${\mathcal F}$ is an upper $h$-semicontinuous mapping. The polynomial $P_{m}=\sum_{i=0}^{m}a_{i}x^{i}$ of the best approximation in the Hausdorff metric on the set $X$ of a segment function ${\mathcal F}$ with a vector of coefficients $\vec{a}=(a_0,a_1,\dots,a_m)\in {\mathbb{R}^{m+1}}$ is a solution to the extremal problem $ \min_{\vec{a}\in {\mathbb{R}^{m+1}}} \max_{x\in X}\max(P_{m}(x)-f_{1}(x),f_{2}(x)-P_{m}(x)).$ It is shown by methods of constructive function theory that, for any functions $f_{1}(x)\le f_{2}(x)$ continuous on $X$, there exists some polynomial of best approximation in the Hausdorff metric as the segment function ${\mathcal F} (x)$ is upper $h$-semicontinuous on $X$. An algorithm for describing the set $E$ of coefficients $\vec{a}$ of polynomials of the best approximation of a segment function is proposed. Necessary and sufficient conditions for the uniqueness of the polynomial of best approximation of the segment function are obtained. The results of numerical experiments carried out using the proposed algorithm are presented.
Key words: best approximation of functions, polynomial approximation, segment function.
Received: 13.01.2022
Bibliographic databases:
Document Type: Article
UDC: 517.518.8
MSC: 65D15, 26E25
Language: Russian
Citation: A. Yu. Trynin, “On the best polynomials approximation of segment functions”, Vladikavkaz. Mat. Zh., 25:1 (2023), 105–111
Citation in format AMSBIB
\Bibitem{Try23}
\by A.~Yu.~Trynin
\paper On the best polynomials approximation of segment functions
\jour Vladikavkaz. Mat. Zh.
\yr 2023
\vol 25
\issue 1
\pages 105--111
\mathnet{http://mi.mathnet.ru/vmj851}
\crossref{https://doi.org/10.46698/m0485-4484-9134-k}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4567608}
Linking options:
  • https://www.mathnet.ru/eng/vmj851
  • https://www.mathnet.ru/eng/vmj/v25/i1/p105
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:97
    Full-text PDF :39
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024