Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2007, Volume 9, Number 1, Pages 30–37 (Mi vmj85)  

This article is cited in 3 scientific papers (total in 3 papers)

A note on weakly $\aleph_1$-separable $p$-groups

P. V. Danchev

Plovdiv State University «Paissii Hilendarski», Plovdiv, Bulgaria
Full-text PDF (142 kB) Citations (3)
References:
Abstract: It is well-known by Hill-Griffith that there exist $\aleph_1$-separable $p$-primary groups which are not direct sums of cycles. A problem of challenging interest, mainly due to Hill (Rocky Mount. J. Math., 1971), is under what extra circumstances on the group structure this holds untrue, that is every $\aleph_1$-separable $p$-group is a direct sum of cyclic groups. We prove here that any weakly $\aleph_1$-separable $p$-group of cardinality not exceeding $\aleph_1$ is quasi-complete precisely when it is a bounded direct sum of cycles, thus partly answering the posed question in the affirmative.
Key words: weakly $\aleph_1$-separable groups, quasi-complete groups, torsion-complete groups, bounded groups.
Received: 03.07.2006
Bibliographic databases:
Document Type: Article
UDC: 512.742
MSC: 20K 10
Language: English
Citation: P. V. Danchev, “A note on weakly $\aleph_1$-separable $p$-groups”, Vladikavkaz. Mat. Zh., 9:1 (2007), 30–37
Citation in format AMSBIB
\Bibitem{Dan07}
\by P.~V.~Danchev
\paper A note on weakly $\aleph_1$-separable $p$-groups
\jour Vladikavkaz. Mat. Zh.
\yr 2007
\vol 9
\issue 1
\pages 30--37
\mathnet{http://mi.mathnet.ru/vmj85}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2434621}
\elib{https://elibrary.ru/item.asp?id=11620327}
Linking options:
  • https://www.mathnet.ru/eng/vmj85
  • https://www.mathnet.ru/eng/vmj/v9/i1/p30
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:323
    Full-text PDF :92
    References:67
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024