Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2023, Volume 25, Number 1, Pages 81–92
DOI: https://doi.org/10.46698/p5608-0614-8805-b
(Mi vmj849)
 

Unicity on entire functions concerning their difference operators and derivatives

S. Rajeshwaria, B. Sheebakousarb

a Department of Mathematics, Bangalore Institute of Technology, Vishweshwarapura, Basavanagudi, Bangalore-560004, India
b Presidency University, School of Engineering, Itagalpura, Rajanakunte, Yelahanka, Bangalore-560 064, India
References:
Abstract: In this paper we study the uniqueness of entire functions concerning their difference operator and derivatives. The idea of entire and meromorphic functions relies heavily on this direction. Rubel and Yang considered the uniqueness of entire function and its derivative and proved that if $f(z)$ and $f'(z)$ share two values $a,b$ counting multilicities then $f(z)\equiv f'(z)$. Later, Li Ping and Yang improved the result given by Rubel and Yang and proved that if $f(z)$ is a non-constant entire function and $a,b$ are two finite distinct complex values and if $f(z)$ and $f^{(k)}(z)$ share $a$ counting multiplicities and $b$ ignoring multiplicities then $f(z)\equiv f^{(k)}(z)$. In recent years, the value distribution of meromorphic functions of finite order with respect to difference analogue has become a subject of interest. By replacing finite distinct complex values by polynomials, we prove the following result: Let $\Delta f(z)$ be trancendental entire functions of finite order, $ k \geq 0$ be integer and $P_{1}$ and $P_{2}$ be two polynomials. If $\Delta f(z)$ and $f^{(k)}$ share $P_{1}$ CM and share $P_{2}$ IM, then $\Delta f \equiv f^{(k)}$. A non-trivial proof of this result uses Nevanlinna's value distribution theory.
Key words: difference operator, shared values, finite order, uniqueness, entire function, polynomials.
Received: 13.11.2021
Bibliographic databases:
Document Type: Article
UDC: 517.53
MSC: 30D35, 39A32
Language: English
Citation: S. Rajeshwari, B. Sheebakousar, “Unicity on entire functions concerning their difference operators and derivatives”, Vladikavkaz. Mat. Zh., 25:1 (2023), 81–92
Citation in format AMSBIB
\Bibitem{RajShe23}
\by S.~Rajeshwari, B.~Sheebakousar
\paper Unicity on entire functions concerning their difference operators and derivatives
\jour Vladikavkaz. Mat. Zh.
\yr 2023
\vol 25
\issue 1
\pages 81--92
\mathnet{http://mi.mathnet.ru/vmj849}
\crossref{https://doi.org/10.46698/p5608-0614-8805-b}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4567606}
Linking options:
  • https://www.mathnet.ru/eng/vmj849
  • https://www.mathnet.ru/eng/vmj/v25/i1/p81
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024