Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2022, Volume 24, Number 4, Pages 127–132
DOI: https://doi.org/10.46698/o1968-1156-5382-e
(Mi vmj842)
 

Embeddings into $\mathbb{B}$-cyclic Banach spaces

B. B. Tasoevab

a North Caucasus Center for Mathematical Research VSC RAS, 1 Williams St., village of Mikhailovskoye 363110, Russia
b Southern Mathematical Institute VSC RAS, 53 Vatutina St., Vladikavkaz 362025, Russia
References:
Abstract: For a complete Boolean algebra $\mathbb{B}$ and nonzero $\pi\in \mathbb{B}$, the notion of an $\mathbb{B}_{\pi}$-embedding of Banach spaces into $\mathbb{B}$-cyclic Banach spaces is introduced. The notion of a lattice $\mathbb{B}_{\pi}$-embedding of Banach lattices into $\mathbb{B}$-cyclic Banach lattices is also introduced. A criterion for the $\mathbb{B}_{\pi}$-embedding of a space of conti-\eject nuous vector-valued functions with values in an arbitrary Banach space into a $\mathbb{B}$-cyclic Banach space is established, as well as a criterion for the lattice $\mathbb{B}_{\pi}$-embedding of a space of continuous vector-valued functions with values in an arbitrary Banach lattice into a $\mathbb{B}$-cyclic Banach lattice. The obtained results allow us to outline an approach for isometric and isomorphic classification of $\mathbb{B}$-cyclic Banach spaces. In the course of establishing the results, the tool of lattice-valued spaces was widely used.
Key words: Banach lattice, $\mathbb{B}$-cyclic Banach space, isomorphic classification.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2022-896
Received: 27.06.2022
Bibliographic databases:
Document Type: Article
UDC: 517.982
MSC: 46B42, 46B04
Language: Russian
Citation: B. B. Tasoev, “Embeddings into $\mathbb{B}$-cyclic Banach spaces”, Vladikavkaz. Mat. Zh., 24:4 (2022), 127–132
Citation in format AMSBIB
\Bibitem{Tas22}
\by B.~B.~Tasoev
\paper Embeddings into $\mathbb{B}$-cyclic Banach spaces
\jour Vladikavkaz. Mat. Zh.
\yr 2022
\vol 24
\issue 4
\pages 127--132
\mathnet{http://mi.mathnet.ru/vmj842}
\crossref{https://doi.org/10.46698/o1968-1156-5382-e}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4527685}
Linking options:
  • https://www.mathnet.ru/eng/vmj842
  • https://www.mathnet.ru/eng/vmj/v24/i4/p127
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:62
    Full-text PDF :18
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024