Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2022, Volume 24, Number 3, Pages 133–143
DOI: https://doi.org/10.46698/n0335-8321-3720-b
(Mi vmj831)
 

On an estimate of M. M. Djrbashyan's product $B_{\omega}$

T. V. Tavaratsyan

Vanadzor State University after H. Toumanyan, 36 Tigran Mec St., Vanadzor 2021, Armenia
References:
Abstract: In the mid-60s, by M. M. Djrbashyan proposed a new method for the definition and factorization of wide classes of functions meromorphic in the unit circle. These classes, which are denoted by $N\{\omega\}$, have a complex structure and cover all meromorphic functions in the unit circle due to the fact that they depend on a functional parameter $\omega (x)$. They go to classes $N_{\alpha }$ in case $\omega (x)=(1-x)^{\alpha}$, $-1<\alpha <+\infty$, and in special case $\omega (x)\equiv 1$, the class $N\{ \omega\}$ is the same as Nevanlinna's class. The fundamental role in the theory of factorization of these classes is played by the products $B_{\omega}$ of M. M. Djrbashyan, which in the case $\omega (x)=(1-x)^{\alpha}$, $-1<\alpha <+\infty$, turn into the products $B_{\alpha}$ of M. M. Djrbashyan. In a special case $\omega (x)\equiv 1$, products $B_{\omega}$ are transformed into products by Blaschke. Using the well-known theorem on nonnegative trigonometric series, V. S. Zakaryan, obtained upper estimations for the modules of functions $B_{\alpha}$, for $-1<\alpha <0$ . In this work, using a similar method, it is proved that $U_{\omega}(z;\zeta )\ge 0$, where $U_{\omega}$ is some auxiliary function. Next, using this result, upper estimations are given for the modules of products $B_{\omega}$ when $\omega (x)\in \Omega_0$.
Key words: Djrbashyan products, Blaschke products, convex sequences, class of functions $\Omega_0$, Fourier series.
Received: 17.08.2021
Bibliographic databases:
Document Type: Article
UDC: 517.53
MSC: 30J10, 32A35
Language: Russian
Citation: T. V. Tavaratsyan, “On an estimate of M. M. Djrbashyan's product $B_{\omega}$”, Vladikavkaz. Mat. Zh., 24:3 (2022), 133–143
Citation in format AMSBIB
\Bibitem{Tav22}
\by T.~V.~Tavaratsyan
\paper On an estimate of M.~M.~Djrbashyan's product $B_{\omega}$
\jour Vladikavkaz. Mat. Zh.
\yr 2022
\vol 24
\issue 3
\pages 133--143
\mathnet{http://mi.mathnet.ru/vmj831}
\crossref{https://doi.org/10.46698/n0335-8321-3720-b}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4489397}
Linking options:
  • https://www.mathnet.ru/eng/vmj831
  • https://www.mathnet.ru/eng/vmj/v24/i3/p133
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:83
    Full-text PDF :23
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024