Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2022, Volume 24, Number 3, Pages 5–20
DOI: https://doi.org/10.46698/a8091-7203-8279-c
(Mi vmj821)
 

This article is cited in 2 scientific papers (total in 2 papers)

On a new combination of orthogonal polynomials sequences

K. Ali Khelil, A. Belkebir, M. Ch. Bouras

Badji Mokhtar University, Mathematical Department, B. P. 12, Annaba 23000, Algeria
Full-text PDF (252 kB) Citations (2)
References:
Abstract: In this paper, we are interested in the following inverse problem. We assume that $\{P_{n}\} _{n\geq 0}$ is a monic orthogonal polynomials sequence with respect to a quasi-definite linear functional $u$ and we analyze the existence of a sequence of orthogonal polynomials $\{ Q_{n}\} _{n\geq 0}$ such that we have a following decomposition $Q_{n}(x)+r_{n}Q_{n-1}(x)=P_{n}(x)+s_{n}P_{n-1}(x)+t_{n}P_{n-2}(x) +v_{n}P_{n-3}( x)$, $n\geq 0$, when $v_{n}r_{n}\neq 0,$ for every $n\geq 4.$ Moreover, we show that the orthogonality of the sequence $\{Q_{n}\}_{n\geq 0}$ can be also characterized by the existence of sequences depending on the parameters $r_{n}$, $s_{n}$, $t_{n}$, $v_{n}$ and the recurrence coefficients which remain constants. Furthermore, we show that the relation between the corresponding linear functionals is $k( x-c) u=( x^{3}+ax^{2}+bx+d) v$, where $c, a, b, d\in \mathbb{C}$ and $k\in \mathbb{C}\setminus \{0\}$. We also study some subcases in which the parameters $r_{n},$ $s_{n},$ $t_{n}$ and $v_{n}$ can be computed more easily. We end by giving an illustration for a special example of the above type relation.
Key words: orthogonal polynomials, linear functionals, inverse problem, Chebyshev polynomials.
Received: 31.03.2021
Bibliographic databases:
Document Type: Article
UDC: 512.62
MSC: 33C45, 42C05
Language: English
Citation: K. Ali Khelil, A. Belkebir, M. Ch. Bouras, “On a new combination of orthogonal polynomials sequences”, Vladikavkaz. Mat. Zh., 24:3 (2022), 5–20
Citation in format AMSBIB
\Bibitem{AliBelBou22}
\by K.~Ali Khelil, A.~Belkebir, M.~Ch.~Bouras
\paper On a new combination of orthogonal polynomials sequences
\jour Vladikavkaz. Mat. Zh.
\yr 2022
\vol 24
\issue 3
\pages 5--20
\mathnet{http://mi.mathnet.ru/vmj821}
\crossref{https://doi.org/10.46698/a8091-7203-8279-c}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4489387}
Linking options:
  • https://www.mathnet.ru/eng/vmj821
  • https://www.mathnet.ru/eng/vmj/v24/i3/p5
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:75
    Full-text PDF :45
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024