Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2022, Volume 24, Number 1, Pages 36–43
DOI: https://doi.org/10.46698/t8778-6480-0136-d
(Mi vmj799)
 

On normal $\mu$-Hankel operators

E. Yu. Kuzmenkova, A. R. Mirotin

Francisk Skorina Gomel State University, 104 Sovetskaya St., Gomel 246019, Belarus
References:
Abstract: Hankel operators form one of the most important classes of operators in spaces of analytic functions and have numerous implementations. These operators can be defined as operators having Hankel matrices (i. e., matrices whose elements depend only on the sum of the indices) with respect to some orthonormal basis in a separable Hilbert space. This work continues the research begun in the work of the authors «$\mu$-Hankel operators on Hilbert spaces», Opuscula Math., 2021, vol. 41, no. 6, p. 881–899, where a new class of operators in Hilbert spaces was introduced ($\mu$-Hankel operators, $\mu$ is a complex parameter). Such operators act in a separable Hilbert space and, in some orthonormal basis of this space, have matrices whose diagonals, orthogonal to the main diagonal, are geometric progressions with denominator $\mu$. Thus, the classical Hankel operators correspond to the case $\mu=1$. The main result of the paper is a criterion for the normality of $\mu$-Hankel operators. By analogy with the Hankel operators, the considered class of operators has specific implementations in the form of integral operators, which allows apply to these operators the results obtained in an abstract context, and thereby contribute to the theory of integral operators. In this paper, such a realization is considered in the Hardy space on the unit circle. Criteria for the self-adjointness and normality of these operators are given.
Key words: Hankel operator, $ \mu$-Hankel operator, normal operator, self-adjoint operator, Hardy space, integral operator.
Received: 11.07.2021
Bibliographic databases:
Document Type: Article
UDC: 517.983
MSC: 47B15, 47B35
Language: Russian
Citation: E. Yu. Kuzmenkova, A. R. Mirotin, “On normal $\mu$-Hankel operators”, Vladikavkaz. Mat. Zh., 24:1 (2022), 36–43
Citation in format AMSBIB
\Bibitem{KuzMir22}
\by E.~Yu.~Kuzmenkova, A.~R.~Mirotin
\paper On normal $\mu$-Hankel operators
\jour Vladikavkaz. Mat. Zh.
\yr 2022
\vol 24
\issue 1
\pages 36--43
\mathnet{http://mi.mathnet.ru/vmj799}
\crossref{https://doi.org/10.46698/t8778-6480-0136-d}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4405954}
Linking options:
  • https://www.mathnet.ru/eng/vmj799
  • https://www.mathnet.ru/eng/vmj/v24/i1/p36
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:94
    Full-text PDF :35
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024