Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2021, Volume 23, Number 4, Pages 109–111
DOI: https://doi.org/10.46698/q0369-3594-2531-z
(Mi vmj790)
 

This article is cited in 1 scientific paper (total in 1 paper)

Notes

A note on periodic rings

P. V. Danchev

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 8 Acad. G. Bonchev St., Sofia 1113, Bulgaria
Full-text PDF (156 kB) Citations (1)
References:
Abstract: We obtain a new and non-trivial characterization of periodic rings (that are those rings $R$ for which, for each element $x$ in $R$, there exists two different integers $m$, $n$ strictly greater than $1$ with the property $x^m=x^n$) in terms of nilpotent elements which supplies recent results in this subject by Cui–Danchev published in (J. Algebra & Appl., 2020) and by Abyzov–Tapkin published in (J. Algebra & Appl., 2022). Concretely, we state and prove the slightly surprising fact that an arbitrary ring $R$ is periodic if, and only if, for every element $x$ from $R$, there are integers $m>1$ and $n>1$ with $m\not= n$ such that the difference $x^m-x^n$ is a nilpotent.
Key words: potent rings, periodic rings, nilpotent elements.
Funding agency Grant number
Bulgarian National Science Fund KP-06 No. 32/1
The paper is partially supported by the Bulgarian National Science Fund under Grant KP-06 No. 32/1 of December 07, 2019.
Received: 09.06.2021
Document Type: Article
UDC: 512.55
Language: English
Citation: P. V. Danchev, “A note on periodic rings”, Vladikavkaz. Mat. Zh., 23:4 (2021), 109–111
Citation in format AMSBIB
\Bibitem{Dan21}
\by P.~V.~Danchev
\paper A note on periodic rings
\jour Vladikavkaz. Mat. Zh.
\yr 2021
\vol 23
\issue 4
\pages 109--111
\mathnet{http://mi.mathnet.ru/vmj790}
\crossref{https://doi.org/10.46698/q0369-3594-2531-z}
Linking options:
  • https://www.mathnet.ru/eng/vmj790
  • https://www.mathnet.ru/eng/vmj/v23/i4/p109
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:71
    Full-text PDF :40
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024