Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2021, Volume 23, Number 4, Pages 96–108
DOI: https://doi.org/10.46698/e4624-8934-5248-n
(Mi vmj789)
 

This article is cited in 2 scientific papers (total in 2 papers)

Local grand Lebesgue spaces

S. G. Samkoab, S. M. Umarkhadzhievbc

a University of Algarve, Faro 8005-139, Portugal
b Kh. Ibragimov Complex Institute of Russian Academy of Sciences, 21 а Staropromyslovskoe Hwy, Grozny 364051, Russia
c Academy of Sciences of Chechen Republic, 13 Esambaev Av., Grozny 364024, Russia
Full-text PDF (264 kB) Citations (2)
References:
Abstract: We introduce “local grand” Lebesgue spaces $L^{p),\theta}_{x_0,a}(\Omega)$, $0<p<\infty,$ $\Omega \subseteq \mathbb{R}^n$, where the process of “grandization” relates to a single point $x_0\in \Omega$, contrast to the case of usual known grand spaces $L^{p),\theta}(\Omega)$, where “grandization” relates to all the points of $\Omega$. We define the space $L^{p),\theta}_{x_0,a}(\Omega)$ by means of the weight $a(|x-x_0|)^{\varepsilon p}$ with small exponent, $a(0)=0$. Under some rather wide assumptions on the choice of the local “grandizer” $a(t)$, we prove some properties of these spaces including their equivalence under different choices of the grandizers $a(t)$ and show that the maximal, singular and Hardy operators preserve such a “single-point grandization” of Lebesgue spaces $L^p(\Omega)$, $1<p<\infty$, provided that the lower Matuszewska–Orlicz index of the function $a$ is positive. A Sobolev-type theorem is also proved in local grand spaces under the same condition on the grandizer.
Key words: grand space, Lebesgue space, Muckenhoupt weight, maximal operator, singular operator, Hardy operator, Stein–Weiss interpolation theorem, Matuszewska–Orlicz indices.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00223
20-51-46003
The research of S. Samko was supported by Russian Foundation for Basic Research under the grant № 19-01-00223 and TUBITAK and Russian Foundation for Basic research under the grant № 20-51-46003. The research of S. Umarkhadzhiev was supported by TUBITAK and Russian Foundation for Basic Research under the grant № 20-51-46003.
Received: 17.05.2021
Document Type: Article
UDC: 517.928+517.968
MSC: 46E30, 42B35
Language: English
Citation: S. G. Samko, S. M. Umarkhadzhiev, “Local grand Lebesgue spaces”, Vladikavkaz. Mat. Zh., 23:4 (2021), 96–108
Citation in format AMSBIB
\Bibitem{SamUma21}
\by S.~G.~Samko, S.~M.~Umarkhadzhiev
\paper Local grand Lebesgue spaces
\jour Vladikavkaz. Mat. Zh.
\yr 2021
\vol 23
\issue 4
\pages 96--108
\mathnet{http://mi.mathnet.ru/vmj789}
\crossref{https://doi.org/10.46698/e4624-8934-5248-n}
Linking options:
  • https://www.mathnet.ru/eng/vmj789
  • https://www.mathnet.ru/eng/vmj/v23/i4/p96
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:173
    Full-text PDF :62
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024