Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2021, Volume 23, Number 4, Pages 68–76
DOI: https://doi.org/10.46698/y2738-1800-0363-i
(Mi vmj786)
 

Distance-regular graphs with intersection arrays $\{7,6,6;1,1,2\}$ and $\{42,30,2;1,10,36\}$ do not exist

A. A. Makhneva, V. V. Bitkinab, A. K. Gutnovabc

a N. N. Krasovskii Institute of Mathematics and Mechanics, 16 S. Kovalevskaja St., Ekaterinburg 620990, Russia
b North Ossetian State University, 44–46 Vatutin St., Vladikavkaz 362025, Russia
c North Caucasus Center for Mathematical Research, 19 Vatutin St., Vladikavkaz 362025, Russia
References:
Abstract: Let $\Gamma$ be a distance-regular graph of diameter $3$ without triangles, $u$ be a vertex of the graph $\Gamma$, $\Delta^i =\Gamma_i (u)$ and $\Sigma^i = \Delta^i_{2,3}$. Then $\Sigma^i$ is a regular graph without $3$-cocliques of degree $k'=k_i-a_i-1$ on $v' = k_i$ vertices. Note that for non-adjacent vertices $y, z \in \Sigma^i$ we have $\Sigma^i = \{y, z\} \cup \Sigma^i (y) \cup \Sigma^i (z)$. Therefore, for $\mu'= |\Sigma^i (y) \cap \Sigma^i (z)| $ we have the equality $v'= 2k' + 2-\mu'$. Hence the graph $\Sigma$ is coedge regular with parameters $(v', k', \mu')$. It is proved in the paper that a distance-regular graph with intersection array $\{7,6,6; 1,1,2 \}$ does not exist. In the article by M. S. Nirova "On distance-regular graphs with $\theta_2 = -1$" is proved that if there is a strongly regular graph with parameters $(176,49,12,14)$, in which the neighborhoods of the vertices are $7 \times 7$ -lattices, then there also exists a distance-regular graph with intersection array $\{7,6,6; 1,1,2\}$. M. P. Golubyatnikov noticed that for a distance-regular graph $\Gamma$ with intersection array $\{7,6,6; 1,1,2\}$ graph $\Gamma_2$ is distance regular with intersection array $\{42,30,2; 1,10,36\}$. With this result and calculations of the triple intersection numbers, it is proved that the distance-regular graphs with intersection arrays $\{7,6,6; 1,1,2\}$ and $\{42,30,2; 1,10,36\}$ do not exist.
Key words: distance-regular graph, triangle-free graph, triple intersection numbers.
Received: 14.12.2020
Document Type: Article
UDC: 519.17
MSC: 20D45
Language: Russian
Citation: A. A. Makhnev, V. V. Bitkina, A. K. Gutnova, “Distance-regular graphs with intersection arrays $\{7,6,6;1,1,2\}$ and $\{42,30,2;1,10,36\}$ do not exist”, Vladikavkaz. Mat. Zh., 23:4 (2021), 68–76
Citation in format AMSBIB
\Bibitem{MakBitGut21}
\by A.~A.~Makhnev, V.~V.~Bitkina, A.~K.~Gutnova
\paper Distance-regular graphs with intersection arrays $\{7,6,6;1,1,2\}$ and $\{42,30,2;1,10,36\}$ do not exist
\jour Vladikavkaz. Mat. Zh.
\yr 2021
\vol 23
\issue 4
\pages 68--76
\mathnet{http://mi.mathnet.ru/vmj786}
\crossref{https://doi.org/10.46698/y2738-1800-0363-i}
Linking options:
  • https://www.mathnet.ru/eng/vmj786
  • https://www.mathnet.ru/eng/vmj/v23/i4/p68
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025