Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2021, Volume 23, Number 2, Pages 65–69
DOI: https://doi.org/10.46698/j7484-0095-3580-b
(Mi vmj764)
 

Distance-regular graph with intersection array $\{140,108,18;1,18,105\}$ does not exist

A. A. Makhneva, M. S. Nirovab

a N. N. Krasovskii Institute of Mathematics and Mechanics, 16 S. Kovalevskaja St., Ekaterinburg 620990, Russia
b Kabardino-Balkarian State University, 173 Chernyshevsky St., Nalchik 360004, Russia
References:
Abstract: Distance-regular graph $\Gamma$ of diameter $3$ having the second eigenvalue $\theta_1=a_3$ is called Shilla graph. In this case $a=a_3$ devides $k$ and we set $b=b(\Gamma)=k/a$. Jurishich and Vidali found intersection arrays of $Q$-polynomial Shilla graphs with $b_2=c_2$: $\{2rt(2r+1),(2r-1)(2rt+t+1),r(r+t);1,r(r+t),t(4r^2-1)\}$. But many arrays in this series are not feasible. Belousov I. N. and Makhnev A. A. found a new infinite series feasible arrays of $Q$-polynomial Shilla graphs with $b_2=c_2$ ($t=2r^2-1$): $\{2r(2r^2-1)(2r+1),(2r-1)(2r(2r^2-1)+2r^2),r(2r^2+r-1);1,r(2r^2+r-1),(2r^2-1)(4r^2-1)\}$. If $r=2$ then we have intersection array $\{140,108,18;1,18,105\}$. In the paper it is proved that graph with this intersection array does not exist.
Key words: distance-regular graph, triangle-free graph, triple intersection numbers.
Funding agency Grant number
Russian Foundation for Basic Research 20-51-53013
Received: 14.12.2020
Document Type: Article
UDC: 519.17
MSC: 20D45
Language: Russian
Citation: A. A. Makhnev, M. S. Nirova, “Distance-regular graph with intersection array $\{140,108,18;1,18,105\}$ does not exist”, Vladikavkaz. Mat. Zh., 23:2 (2021), 65–69
Citation in format AMSBIB
\Bibitem{MakNir21}
\by A.~A.~Makhnev, M.~S.~Nirova
\paper Distance-regular graph with intersection array $\{140,108,18;1,18,105\}$ does not exist
\jour Vladikavkaz. Mat. Zh.
\yr 2021
\vol 23
\issue 2
\pages 65--69
\mathnet{http://mi.mathnet.ru/vmj764}
\crossref{https://doi.org/10.46698/j7484-0095-3580-b}
Linking options:
  • https://www.mathnet.ru/eng/vmj764
  • https://www.mathnet.ru/eng/vmj/v23/i2/p65
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:85
    Full-text PDF :17
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024