Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2020, Volume 22, Number 4, Pages 104–118
DOI: https://doi.org/10.46698/c3825-5071-7579-i
(Mi vmj748)
 

This article is cited in 3 scientific papers (total in 3 papers)

Grand Morrey type spaces

S. G. Samkoab, S. M. Umarkhadzhievbc

a University of Algarve, Faro 8005-139, Portugal
b Kh. Ibragimov Complex Institute of the Russian Academy of Sciences, 21 a Staropromyslovskoe Hwy, Grozny 364051, Russia
c Academy of Sciences of Chechen Republic, 13 Esambaev Av., Grosny 364024, Russia
Full-text PDF (279 kB) Citations (3)
References:
Abstract: The so called grand spaces nowadays are one of the main objects in the theory of function spaces. Grand Lebesgue spaces were introduced by T. Iwaniec and C. Sbordone in the case of sets $\Omega$ with finite measure $|\Omega|<\infty$, and by the authors in the case $|\Omega|=\infty$. The latter is based on introduction of the notion of grandizer. The idea of “grandization” was also applied in the context of Morrey spaces. In this paper we develop the idea of grandization to more general Morrey spaces $L^{p,q,w}(\mathbb{R}^n)$, known as Morrey type spaces. We introduce grand Morrey type spaces, which include mixed and partial grand versions of such spaces. The mixed grand space is defined by the norm
$$ \sup_{\varepsilon,\delta} \varphi(\varepsilon,\delta)\sup_{x\in E} \left(\int\limits_{0}^{\infty}{w(r)^{q-\delta}}b(r)^{\frac{\delta}{q}} \left( \int\limits_{|x-y|<r}\big|f(y)\big|^{p-\varepsilon} a(y)^{\frac{\varepsilon}{p}} dy\right)^{\frac{q-\delta}{p-\varepsilon}} \frac{dr}{r}\right)^{\frac{1}{q-\varepsilon}} $$
with the use of two grandizers $a$ and $b$. In the case of grand spaces, partial with respect to the exponent $q$, we study the boundedness of some integral operators. The class of these operators contains, in particular, multidimensional versions of Hardy type and Hilbert operators.
Key words: Morrey type space, grand space, grand Morrey type space, grandizer, partial grandization, mixed grandization, homogeneous kernel, Hardy type operator, Hilbert operator.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00223
20-51-46003
The research of S. Samko was supported by Russian Foundation for Basic Research under the grant 19-01-00223 and TUBITAK and Russian Foundation for Basic research under the grant 20-51-46003. The research of S. Umarkhadzhiev was supported by TUBITAK and Russian Foundation for Basic Research under the grant 20-51-46003.
Received: 13.07.2020
Document Type: Article
UDC: 517.968
MSC: 46E30, 42B35
Language: English
Citation: S. G. Samko, S. M. Umarkhadzhiev, “Grand Morrey type spaces”, Vladikavkaz. Mat. Zh., 22:4 (2020), 104–118
Citation in format AMSBIB
\Bibitem{SamUma20}
\by S.~G.~Samko, S.~M.~Umarkhadzhiev
\paper Grand Morrey type spaces
\jour Vladikavkaz. Mat. Zh.
\yr 2020
\vol 22
\issue 4
\pages 104--118
\mathnet{http://mi.mathnet.ru/vmj748}
\crossref{https://doi.org/10.46698/c3825-5071-7579-i}
Linking options:
  • https://www.mathnet.ru/eng/vmj748
  • https://www.mathnet.ru/eng/vmj/v22/i4/p104
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:194
    Full-text PDF :51
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024