Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2020, Volume 22, Number 4, Pages 92–103
DOI: https://doi.org/10.46698/d4799-1202-6732-b
(Mi vmj747)
 

This article is cited in 1 scientific paper (total in 1 paper)

Some properties of orthogonally additive homogeneous polynomials on Banach lattices

Z. A. Kusraevaab, S. N. Siukaevc

a Regional Mathematical Center of Southern Federal University, 105/42 Bolshaya Sadovaya St., Rostov-on-Don 344006, Russia
b Southern Mathematical Institute VSC RAS, 22 Markus St., Vladikavkaz 362027, Russia
c North-Ossetian State University after K. L. Khetagurov, 44 Vatutina St., Vladikavkaz 362025, Russia
Full-text PDF (301 kB) Citations (1)
References:
Abstract: Let $E$ and $F$ be Banach lattices and let $\mathcal{P}_o({}^s E,F)$ stand for the space of all norm bounded orthogonally additive $s$-homogeneous polynomial from $E$ to $F$. Denote by $\mathcal{P}_o^r({}^s E,F)$ the part of $\mathcal{P}_o({}^s E,F)$ consisting of the differences of positive polynomials. The main results of the paper read as follows.
Theorem 3.4. Let $s\in\mathbb{N}$ and $(E,\|\cdot\|)$ is a $\sigma$-Dedekind complete $s$-convex Banach lattice. The following are equivalent: $(1)$ $\mathcal{P}_o({}^s E,F)\equiv\mathcal{P}_o^r({}^s E,F)$ for every $AM$-space $F$. $(2)$ $\mathcal{P}_o({}^s E,c_0)=\mathcal{P}^r_o({}^s E,F)$ for every $AM$-space $F$. $(3)$ $\mathcal{P}_o({}^s E,c_0)=\mathcal{P}^r_o({}^s E,c_0)$. $(4)$ $\mathcal{P}_o({}^s E,c_0)\equiv\mathcal{P}_o^r({}^s E,c_0)$. $(5)$ $E$ is atomic and order continuous.
Theorem 4.3. For a pair of Banach lattices $E$ and $F$ the following are equivalent: $(1)$ $\mathcal{P}_o^r({}^s E,F)$ is a vector lattice and the regular norm $\|\cdot\|_r$ on $\mathcal{P}_o^r({}^s E,F)$ is order continuous. $(2)$ Each positive orthogonally additive $s$-homogeneous polynomial from $E$ to $F$ is $L$- and $M$-weakly compact.
Theorem 4.6. Let $E$ and $F$ be Banach lattices. Assume that $F$ has the positive Schur property and $E$ is $s$-convex for some $s\in\mathbb{N}$. Then the following are equivalent: $(1)$ $(\mathcal{P}_o^r({}^s E,F),\|\cdot\|_r)$ is a $K B$-space. $(2)$ The regular norm $\|\cdot\|_r$ on $\mathcal{P}_o^r({}^s E,F)$ is order continuous. $(3)$ $E$ does not contain any sulattice lattice isomorphc to $l^s$.
Key words: Banach lattice, $AM$-space, $KB$-space, homogeneous polynomial, orthogonal additivity, regular norm, order continuity.
Received: 13.05.2020
Document Type: Article
UDC: 517.98
Language: Russian
Citation: Z. A. Kusraeva, S. N. Siukaev, “Some properties of orthogonally additive homogeneous polynomials on Banach lattices”, Vladikavkaz. Mat. Zh., 22:4 (2020), 92–103
Citation in format AMSBIB
\Bibitem{KusSyu20}
\by Z.~A.~Kusraeva, S.~N.~Siukaev
\paper Some properties of orthogonally additive homogeneous polynomials on Banach lattices
\jour Vladikavkaz. Mat. Zh.
\yr 2020
\vol 22
\issue 4
\pages 92--103
\mathnet{http://mi.mathnet.ru/vmj747}
\crossref{https://doi.org/10.46698/d4799-1202-6732-b}
Linking options:
  • https://www.mathnet.ru/eng/vmj747
  • https://www.mathnet.ru/eng/vmj/v22/i4/p92
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:153
    Full-text PDF :35
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024