|
This article is cited in 1 scientific paper (total in 1 paper)
Some properties of orthogonally additive homogeneous polynomials on Banach lattices
Z. A. Kusraevaab, S. N. Siukaevc a Regional Mathematical Center of Southern Federal University, 105/42 Bolshaya Sadovaya St., Rostov-on-Don 344006, Russia
b Southern Mathematical Institute VSC RAS, 22 Markus St., Vladikavkaz 362027, Russia
c North-Ossetian State University after K. L. Khetagurov,
44 Vatutina St., Vladikavkaz 362025, Russia
Abstract:
Let $E$ and $F$ be Banach lattices and let $\mathcal{P}_o({}^s E,F)$ stand for the space of all norm bounded orthogonally additive $s$-homogeneous polynomial from $E$ to $F$. Denote by $\mathcal{P}_o^r({}^s E,F)$ the part of $\mathcal{P}_o({}^s E,F)$ consisting of the differences of positive polynomials. The main results of the paper read as follows.
Theorem 3.4. Let $s\in\mathbb{N}$ and $(E,\|\cdot\|)$ is a $\sigma$-Dedekind complete $s$-convex Banach lattice. The following are equivalent: $(1)$ $\mathcal{P}_o({}^s E,F)\equiv\mathcal{P}_o^r({}^s E,F)$ for every $AM$-space $F$. $(2)$ $\mathcal{P}_o({}^s E,c_0)=\mathcal{P}^r_o({}^s E,F)$ for every $AM$-space $F$. $(3)$ $\mathcal{P}_o({}^s E,c_0)=\mathcal{P}^r_o({}^s E,c_0)$. $(4)$ $\mathcal{P}_o({}^s E,c_0)\equiv\mathcal{P}_o^r({}^s E,c_0)$. $(5)$ $E$ is atomic and order continuous.
Theorem 4.3. For a pair of Banach lattices $E$ and $F$ the following are equivalent: $(1)$ $\mathcal{P}_o^r({}^s E,F)$ is a vector lattice and the regular norm $\|\cdot\|_r$ on $\mathcal{P}_o^r({}^s E,F)$ is order continuous. $(2)$ Each positive orthogonally additive $s$-homogeneous polynomial from $E$ to $F$ is $L$- and $M$-weakly compact.
Theorem 4.6. Let $E$ and $F$ be Banach lattices. Assume that $F$ has the positive Schur property and $E$ is $s$-convex for some $s\in\mathbb{N}$. Then the following are equivalent: $(1)$ $(\mathcal{P}_o^r({}^s E,F),\|\cdot\|_r)$ is a $K B$-space. $(2)$ The regular norm $\|\cdot\|_r$ on $\mathcal{P}_o^r({}^s E,F)$ is order continuous. $(3)$ $E$ does not contain any sulattice lattice isomorphc to $l^s$.
Key words:
Banach lattice, $AM$-space, $KB$-space, homogeneous polynomial, orthogonal additivity, regular norm, order continuity.
Received: 13.05.2020
Citation:
Z. A. Kusraeva, S. N. Siukaev, “Some properties of orthogonally additive homogeneous polynomials on Banach lattices”, Vladikavkaz. Mat. Zh., 22:4 (2020), 92–103
Linking options:
https://www.mathnet.ru/eng/vmj747 https://www.mathnet.ru/eng/vmj/v22/i4/p92
|
Statistics & downloads: |
Abstract page: | 153 | Full-text PDF : | 35 | References: | 26 |
|