Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2020, Volume 22, Number 4, Pages 87–91
DOI: https://doi.org/10.46698/h3104-8810-6070-x
(Mi vmj746)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the structure of elementary nets over quadratic fields

V. A. Koibaevab

a Southern Mathematical Institute VSC RAS, 22 Markus St., Vladikavkaz 362027, Russia
b North-Ossetian State University after K. L. Khetagurov, 44 Vatutina St., Vladikavkaz 362025, Russia
Full-text PDF (204 kB) Citations (1)
References:
Abstract: The structure of elementary nets over quadratic fields is studied. A set of additive subgroups $\sigma=(\sigma_{ij})$, $1\leq i,j\leq n$, of a ring $R$ is called a net of order $n$ over $R$ if $\sigma_{ir} \sigma_{rj} \subseteq{\sigma_{ij}} $ for all $i$, $r$, $j$. The same system, but without the diagonal, is called elementary net (elementary carpet). An elementary net $\sigma=(\sigma_{ij})$ is called irreducible if all additive subgroups $\sigma_{ij}$ are different from zero. Let $K=\mathbb{Q} (\sqrt{d} )$ be a quadratic field, $D$ a ring of integers of the quadratic field $K$, $\sigma = (\sigma_{ij})$ an irreducible elementary net of order $n\geq 3$ over $K$, and $\sigma_{ij}$ a $D$-modules. If the integer $d$ takes one of the following values (22 fields): $-1$, $-2$, $-3$, $-7$, $-11$, $-19$, $2$, $3$, $5$, $6$, $7$, $11$, $13$, $17$, $19$, $21$, $29$, $33$, $37$, $41$, $57$, $73$, then for some intermediate subring $P$, $D\subseteq P\subseteq K$, the net $\sigma$ is conjugated by a diagonal matrix of $D(n, K)$ with an elementary net of ideals of the ring $P$.
Key words: net, carpet, elementary net, closed net, algebraic number field, quadratic field.
Received: 09.08.2020
Document Type: Article
UDC: 512.5
MSC: 20G15
Language: Russian
Citation: V. A. Koibaev, “On the structure of elementary nets over quadratic fields”, Vladikavkaz. Mat. Zh., 22:4 (2020), 87–91
Citation in format AMSBIB
\Bibitem{Koi20}
\by V.~A.~Koibaev
\paper On the structure of elementary nets over quadratic fields
\jour Vladikavkaz. Mat. Zh.
\yr 2020
\vol 22
\issue 4
\pages 87--91
\mathnet{http://mi.mathnet.ru/vmj746}
\crossref{https://doi.org/10.46698/h3104-8810-6070-x}
Linking options:
  • https://www.mathnet.ru/eng/vmj746
  • https://www.mathnet.ru/eng/vmj/v22/i4/p87
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:184
    Full-text PDF :43
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024