Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2020, Volume 22, Number 3, Pages 85–99
DOI: https://doi.org/10.46698/q8093-7554-9905-q
(Mi vmj735)
 

This article is cited in 3 scientific papers (total in 3 papers)

Unconditional bases in radial Hilbert spaces

K. P. Isaev, R. S. Yulmukhametov

Institute of Mathematics with Computing Centre UFRC RAS, 112 Chernyshevsky St., Ufa 450008, Russia
Full-text PDF (287 kB) Citations (3)
References:
Abstract: We consider a Hilbert space of entire functions $H$ that satisfies the conditions: 1) $H$ is functional, that is the evaluation functionals $\delta _z: f\rightarrow f(z)$ are continuous for every $z\in \mathbb{C}$; 2) $H$ has the division property, that is, if $F\in H$, $F(z_0)=0$, then $F(z)(z-z_0)^{-1}\in H$; 3) $H$ is radial, that is, if $F\in H$ and $\varphi \in \mathbb R$, then the function $F(ze^{i\varphi })$ lies in $H$, and $\|F(ze^{i\varphi })\|= \|F\|$; 4) polynomials are complete in $H$ and $\|z^n\|\asymp e^{u(n)},$ $n\in \mathbb N\cup \{0\},$ where the sequence $u(n)$ satisfies the condition $u(n+1)+u(n-1)-2u(n)\succ n^\delta ,$ $n\in \mathbb N,$ for some $\delta >0$. It follows from condition 1) that every functional $\delta _z$ is generated by an element $k_z(\lambda )\in H$ in the sense of $\delta _z(f)=(f(\lambda ),k_z(\lambda )).$ The function $k(\lambda, z)=k_z(\lambda )$ is called the reproducing kernel of the space $H$. A basis $\{ e_k,\ k=1,2,\ldots\}$ in Hilbert space $H$ is called a unconditional basis if there exist numbers $c,C > 0$ such that for any element $x=\sum \nolimits _{k=1}^{\infty } x_ke_k\in H$ the relation
$$ c\sum _{k=1}^\infty |c_k|^2\|e_k\|^2\le \left \|x \right \|^2\le C\sum _{k=1}^\infty |c_k|^2\|e_k\|^2 $$
holds true. The article describes a method for constructing unconditional bases of reproducing kernels in such spaces. This problem goes back to two closely related classical problems: representation of functions by series of exponentials and interpolation by entire functions.
Key words: Hilbert spaces, entire functions, unconditional bases, reproducing kernels.
Received: 23.05.2020
Document Type: Article
UDC: 517.53
MSC: 46E22, 30D10
Language: Russian
Citation: K. P. Isaev, R. S. Yulmukhametov, “Unconditional bases in radial Hilbert spaces”, Vladikavkaz. Mat. Zh., 22:3 (2020), 85–99
Citation in format AMSBIB
\Bibitem{IsaYul20}
\by K.~P.~Isaev, R.~S.~Yulmukhametov
\paper Unconditional bases in radial Hilbert spaces
\jour Vladikavkaz. Mat. Zh.
\yr 2020
\vol 22
\issue 3
\pages 85--99
\mathnet{http://mi.mathnet.ru/vmj735}
\crossref{https://doi.org/10.46698/q8093-7554-9905-q}
Linking options:
  • https://www.mathnet.ru/eng/vmj735
  • https://www.mathnet.ru/eng/vmj/v22/i3/p85
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:183
    Full-text PDF :51
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024