Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2020, Volume 22, Number 3, Pages 18–29
DOI: https://doi.org/10.46698/h8083-6917-3687-w
(Mi vmj730)
 

A Bernstein–Nikol'skii inequality for weighted Lebesgue spaces

H. H. Banga, V. N. Huybc

a Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet St., Cay Giay, Hanoi, Vietnam
b Hanoi University of Science, 334 Nguyen Trai St., Thanh Xuan, Hanoi, Vietnam
c TIMAS, Thang Long University, Nghiem Xuan Yem, Hoang Mai, Hanoi, Vietnam
References:
Abstract: In this paper, we give some results concerning Bernstein–Nikol'skii inequality for weighted Lebesgue spaces. The main result is as follows: Let $1 < u,p < \infty$, $0<q+ 1/p <v + 1/u <1,$ $v-q\geq 0$, $\kappa >0$, $f \in L^u_v(\mathbb{R})$ and $\mathrm{supp}\,\widehat{f} \subset [-\kappa, \kappa]$. Then $D^mf \in L^p_q(\mathbb{R})$, $\mathrm{supp}\,\widehat{D^m f}=\mathrm{supp}\,\widehat{f}$ and there exists a constant $C$ independent of $f$, $m$, $\kappa$ such that $\|D^mf\|_{L^p_{q}} \leq C m^{-\varrho} \kappa^{m+\varrho} \|f\|_{ L^u_v}, $ for all $m = 1,2,\dots $, where $\varrho=v + \frac{1}{u} -\frac{1}{p} - q>0,$ and the weighted Lebesgue space $L^p_q$ consists of all measurable functions such that $\|f\|_{L^p_q} = \big(\int_{\mathbb{R}} |f(x)|^p |x|^{pq} dx\big)^{1/p} < \infty.$ Moreover, $ \lim_{m\to \infty}\|D^mf\|_{L^p_{q}}^{1/m}= \sup \big\{ |x|: x \in \mathrm{supp}\,\widehat{f}\big \}.$ The advantage of our result is that $m^{-\varrho}$ appears on the right hand side of the inequality ($\varrho >0$), which has never appeared in related articles by other authors. The corresponding result for the $n$-dimensional case is also obtained.
Key words: weighted Lebesgue spaces, Bernstein inequality, Nikol'skii inequality.
Funding agency Grant number
Vietnamese Academy of Science and Technology NVCC01.05/19-19
This work was supported by Vietnamese Academy of Science and Technology, grant number NVCC01.05/19-19.
Received: 05.05.2020
Document Type: Article
UDC: 517.518
MSC: 26D10, 46E30
Language: English
Citation: H. H. Bang, V. N. Huy, “A Bernstein–Nikol'skii inequality for weighted Lebesgue spaces”, Vladikavkaz. Mat. Zh., 22:3 (2020), 18–29
Citation in format AMSBIB
\Bibitem{BanHuy20}
\by H.~H.~Bang, V.~N.~Huy
\paper A Bernstein--Nikol'skii inequality for weighted Lebesgue spaces
\jour Vladikavkaz. Mat. Zh.
\yr 2020
\vol 22
\issue 3
\pages 18--29
\mathnet{http://mi.mathnet.ru/vmj730}
\crossref{https://doi.org/10.46698/h8083-6917-3687-w}
Linking options:
  • https://www.mathnet.ru/eng/vmj730
  • https://www.mathnet.ru/eng/vmj/v22/i3/p18
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:99
    Full-text PDF :27
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024