Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2019, Volume 21, Number 3, Pages 24–30
DOI: https://doi.org/10.23671/VNC.2019.3.36458
(Mi vmj697)
 

This article is cited in 2 scientific papers (total in 2 papers)

Decomposition of elementary transvection in elementary net group

S. Yu. Itarovaa, V. A. Koibaevab

a North-Ossetian State University, 46 Vatutin St., Vladikavkaz 362025, Russia
b Southern Mathematical Institute VSC RAS, 22 Marcus St., Vladikavkaz 362027, Russia
Full-text PDF (233 kB) Citations (2)
References:
Abstract: The paper deals with the study of elementary nets (carpets) $\sigma = (\sigma_{ij})$ and elementary net groups $E(\sigma)$. Namely, decomposition of an elementary transvection in elementary net group $E(\sigma)$ is given. The colections of subsets (ideals, additive subgroups and etc.) $ \sigma=\{\sigma_{ij}:\, 1\leq i, j\leq n\}$ of an associative ring with the conditions $\sigma_{ir}\sigma_{rj}\subseteq\sigma_{ij}$, $1\leq i,r,j\leq n,$ arose in a different situations. Such collections are called carpets or nets and a rings, while the associated groups are called carpet (net, congruence, etc.) subgroups. An elementary net (a net without diagonal) $\sigma$ is closed (admissible) if the subgroup $E(\sigma)$ does not contain new elementary transvections. The study was motivated by the question of V. M. Levchuk (The Kourovka notebook, question 15.46) whether or not a necessary and sufficient condition for the admissibility (closure) of the elementary net $\sigma$ is the admissibility (closure) of all pairs $(\sigma_{ij}, \sigma_{ji})$. In other words, the inclusion of an elementary transvection $t_{ij}(\alpha)$ in the elementary group $E(\sigma)$ is equivalent to the inclusion of $t_{ij}(\alpha)$ in the subgroup $\langle t_{ij}(\sigma_{ij}), t_{ji}(\sigma_{ji}) \rangle$ (for any $i\neq j$). Thus, the decomposition of elementary transvection $t_{ij}(\alpha)$ in the elementary net group $E(\sigma)$ becomes relevant. We consider an elementary net $\sigma=(\sigma_{ij})$ (elementary carpet) of the additive subgroups of a commutative ring of order $n$, a derived net $\omega=(\omega_{ij})$ depending on the net $\sigma$, the net $\Omega=(\Omega_{ij})$ associated with the elementary group $E(\sigma)$, where $\omega\subseteq\sigma\subseteq\Omega$ and the net $\Omega$ is the least (complemented) net among all the nets which contain the elementary net $\sigma$. Let $R$ be a commutative unital ring and $n\in\Bbb{N}$, $n\geq 2$. A set $ \sigma = (\sigma_{ij})$, $1\leq{i, j} \leq{n},$ of additive subgroups $\sigma_{ij}$ of the ring $R$ is said to be a net or a carpet over the ring $R$ of order $n$ if $\sigma_{ir} \sigma_{rj} \subseteq{\sigma_{ij}}$ for all $i$, $r$, $j$. A net without diagonal is said to be elementary net or elementary carpet. We prove that every elementary transvection $t_{ij}(\alpha)\in E(\sigma)$ can be decomposed $t_{ij}(\alpha)=ah$ into a product of two matrices $a$ and $h$, where $a$ is a member of the group $\langle t_{ij}(\sigma_{ij}),t_{ji}(\sigma_{ji})\rangle$, $h$ is a member of the net group $G(\tau)$, where $\tau =\begin{pmatrix} \tau_{ii} & \omega_{ij} \omega_{ji} & \tau_{jj} \end{pmatrix}$, $\omega_{ii}\subseteq \tau_{ii} \subseteq \Omega_{ii}$. Important characteristics of matrices $a$ and $h$ involved in the decomposition of elementary transvection $t_{ij}(\alpha)$ were also obtained in the paper.
Key words: nets, carpets, elementary net, net group, closed net, derivative net, elementary net group, transvections.
Received: 26.03.2019
Bibliographic databases:
Document Type: Article
UDC: 512.5
MSC: 20G15
Language: Russian
Citation: S. Yu. Itarova, V. A. Koibaev, “Decomposition of elementary transvection in elementary net group”, Vladikavkaz. Mat. Zh., 21:3 (2019), 24–30
Citation in format AMSBIB
\Bibitem{ItaKoi19}
\by S.~Yu.~Itarova, V.~A.~Koibaev
\paper Decomposition of elementary transvection in elementary net group
\jour Vladikavkaz. Mat. Zh.
\yr 2019
\vol 21
\issue 3
\pages 24--30
\mathnet{http://mi.mathnet.ru/vmj697}
\crossref{https://doi.org/10.23671/VNC.2019.3.36458}
\elib{https://elibrary.ru/item.asp?id=40874239}
Linking options:
  • https://www.mathnet.ru/eng/vmj697
  • https://www.mathnet.ru/eng/vmj/v21/i3/p24
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:205
    Full-text PDF :48
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024