Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2018, Volume 20, Number 4, Pages 76–91
DOI: https://doi.org/10.23671/VNC.2018.4.23390
(Mi vmj679)
 

Convergence of the Lagrange–Sturm–Liouville processes for continuous functions of bounded variation

A. Yu. Trynin

Saratov State University, 83 Astrakhanskaya Str., Saratov 410012, Russia
References:
Abstract: The uniform convergence within an interval $(a,b)\subset [0,\pi]$ of Lagrange processes in eigenfunctions $L_n^{SL}(f,x)=\sum\nolimits_{k=1}^{n}f(x_{k,n})\frac{U_n(x)}{U_{n}'(x_{k,n})(x-x_{k,n})}$ of the Sturm–Liouville problem is established. (Here $0<x_{1,n}<x_{2,n}<\dots<x_{n,n}<\pi$ denote the zeros of the eigenfunction $U_n$ of the Sturm–Liouville problem.) A continuous functions $f$ on $[0,\pi]$ which is of bounded variation on $(a,b)\subset [0,\pi]$ can be uniformly approximated within the interval $(a,b)\subset [0,\pi]$. A criterion for uniform convergence within an interval $(a,b)$ of the constructed interpolation processes is obtained in terms of the maximum of the sum of the moduli of divided differences of the function $f$. Outside the interval $(a, b)$, the Lagrange interpolation process may diverge. The boundedness in the totality of the Lagrange fundamental functions constructed from eigenfunctions of the Sturm–Liouville problem is established. The case of the regular Sturm–Liouville problem with a continuous potential of bounded variation is also considered. The boundary conditions for the third kind Sturm–Liouville problem without Dirichlet conditions are studied. In the presence of service functions for calculating the eigenfunctions of the regular Sturm–Liouville problem, the Lagrange–Sturm–Liouville operator under study is easily implemented by computer technology.
Key words: uniform convergence, sinc approximations, bounded variation, Lagrange–Sturm–Liouville processes.
Received: 13.06.2017
Bibliographic databases:
Document Type: Article
UDC: 517.518.85
MSC: 41A05, 41A58, 94A12
Language: Russian
Citation: A. Yu. Trynin, “Convergence of the Lagrange–Sturm–Liouville processes for continuous functions of bounded variation”, Vladikavkaz. Mat. Zh., 20:4 (2018), 76–91
Citation in format AMSBIB
\Bibitem{Try18}
\by A.~Yu.~Trynin
\paper Convergence of the Lagrange--Sturm--Liouville processes for continuous functions of bounded variation
\jour Vladikavkaz. Mat. Zh.
\yr 2018
\vol 20
\issue 4
\pages 76--91
\mathnet{http://mi.mathnet.ru/vmj679}
\crossref{https://doi.org/10.23671/VNC.2018.4.23390}
\elib{https://elibrary.ru/item.asp?id=36816150}
Linking options:
  • https://www.mathnet.ru/eng/vmj679
  • https://www.mathnet.ru/eng/vmj/v20/i4/p76
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024