Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2018, Volume 20, Number 4, Pages 20–34
DOI: https://doi.org/10.23671/VNC.2018.4.23384
(Mi vmj673)
 

This article is cited in 2 scientific papers (total in 2 papers)

Vector fields with zero flux through spheres of fixed radius

Vit. V. Volchkova, N. P. Volchkovab

a Donetsk National University, 24 Universitetskaya Str., Donetsk 83001, Ukraine
b Donetsk National Technical University, 58 Artyom Str., Donetsk 83000, Ukraine
Full-text PDF (307 kB) Citations (2)
References:
Abstract: The classical property of a periodic function on the real axis is the possibility of its representation by a trigonometric Fourier series. The natural analogue of the periodicity condition in the Euclidean space $\mathbb{R}^n$ is the constancy of the integrals of the function over all balls (or spheres) of a fixed radius. Functions with the specified property can be expanded in a series in special eigenfunctions of the Laplace operator. This fact admits a generalization to vector fields in $\mathbb{R}^n$, having zero flow through spheres of fixed radius. In this case, Smith's representation arises for them as the sum of a solenoidal vector field and an infinite number of potential vector fields. Potential vector fields satisfy the Helmholtz equation related to the zeros of the Bessel function $J_{n/2}$. The purpose of this paper is to obtain local analogs of the Smith theorem. We study vector fields $\mathbf{A}$ with zero flow through spheres of fixed radius on domains $\mathcal{O}$ in Euclidean space that are invariant with respect to rotations. Cases are considered when $\mathcal{O}=B_{R}=\{x\in\mathbb{R}^n: | x |<R\}$ or $\mathcal{O}=B_{a, b}= \{x\in\mathbb{R}^n: a <| x | <b\} $. The description of the fields $\mathbf{A}$ consists of two steps. The first step proves the equality $\mathbf{A}({x})={\mathbf{A}}^s({x})+B({x}){x}$, ${x}\in\mathcal{O}$, where ${\mathbf{A}}^s$ is a suitable solenoidal vector field and $B$ is a scalar field. The second step is to describe the functions $B(x)$. As the main tool for the description of $B(x)$, multidimensional Fourier series in spherical harmonics are used. If $\mathcal{O}=B_{R}$ then the Fourier coefficients of the function $B(x)$ can be represented in the form of series in the hypergeometric functions ${_1}F_2$. In the case of $\mathcal{O}=B_{a,b}$ the corresponding Fourier coefficients can be expanded in the series containing the Bessel, Neumann and Lommel functions. These results can be used in harmonic analysis of vector fields on domains in $\mathbb{R}^n$.
Key words: vector field, zero spherical mean, spherical harmonic, Lommel function.
Received: 16.11.2017
Bibliographic databases:
Document Type: Article
UDC: 517.444
MSC: 53C65, 44A35
Language: Russian
Citation: Vit. V. Volchkov, N. P. Volchkova, “Vector fields with zero flux through spheres of fixed radius”, Vladikavkaz. Mat. Zh., 20:4 (2018), 20–34
Citation in format AMSBIB
\Bibitem{VolVol18}
\by Vit.~V.~Volchkov, N.~P.~Volchkova
\paper Vector fields with zero flux through spheres of fixed radius
\jour Vladikavkaz. Mat. Zh.
\yr 2018
\vol 20
\issue 4
\pages 20--34
\mathnet{http://mi.mathnet.ru/vmj673}
\crossref{https://doi.org/10.23671/VNC.2018.4.23384}
\elib{https://elibrary.ru/item.asp?id=36816144}
Linking options:
  • https://www.mathnet.ru/eng/vmj673
  • https://www.mathnet.ru/eng/vmj/v20/i4/p20
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:348
    Full-text PDF :76
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024