Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2018, Volume 20, Number 3, Pages 78–86
DOI: https://doi.org/10.23671/VNC.2018.3.18031
(Mi vmj667)
 

Some estimates for the generalized Fourier transform associated with the Cherednik–Opdam operator on $\mathbb{R}$

S. El Ouadih, R. Daher, H. S. Lafdal

Department of Mathematics, Faculty of Sciences Aïn Chock, University Hassan II, Route d'ElJadida, Km 8, B.P. 5366 Maârif 20100 Casablanca, Morocco
References:
Abstract: In the classical theory of approximation of functions on $\mathbb{R}^+$, the modulus of smoothness are basically built by means of the translation operators $f \to f(x+y)$. As the notion of translation operators was extended to various contexts (see [2] and [3]), many generalized modulus of smoothness have been discovered. Such generalized modulus of smoothness are often more convenient than the usual ones for the study of the connection between the smoothness properties of a function and the best approximations of this function in weight functional spaces (see [4] and [5]). In [1], Abilov et al. proved two useful estimates for the Fourier transform in the space of square integrable functions on certain classes of functions characterized by the generalized continuity modulus, using a translation operator. In this paper, we also discuss this subject. More specifically, we prove some estimates (similar to those proved in [1]) in certain classes of functions characterized by a generalized continuity modulus and connected with the generalized Fourier transform associated with the differential-difference operator $T^{(\alpha,\beta)}$ in $L^{2}_{\alpha,\beta}(\mathbb{R})$. For this purpose, we use a generalized translation operator.
Key words: Cherednik–Opdam operator, generalized Fourier transform, generalized translation.
Received: 24.02.2016
Revised: 19.01.2018
Bibliographic databases:
Document Type: Article
UDC: 517.98
MSC: 34K99, 42A63
Language: English
Citation: S. El Ouadih, R. Daher, H. S. Lafdal, “Some estimates for the generalized Fourier transform associated with the Cherednik–Opdam operator on $\mathbb{R}$”, Vladikavkaz. Mat. Zh., 20:3 (2018), 78–86
Citation in format AMSBIB
\Bibitem{El DahLaf18}
\by S.~El Ouadih, R.~Daher, H.~S.~Lafdal
\paper Some estimates for the generalized Fourier transform associated with the Cherednik--Opdam operator on $\mathbb{R}$
\jour Vladikavkaz. Mat. Zh.
\yr 2018
\vol 20
\issue 3
\pages 78--86
\mathnet{http://mi.mathnet.ru/vmj667}
\crossref{https://doi.org/10.23671/VNC.2018.3.18031}
\elib{https://elibrary.ru/item.asp?id=36321752}
Linking options:
  • https://www.mathnet.ru/eng/vmj667
  • https://www.mathnet.ru/eng/vmj/v20/i3/p78
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:169
    Full-text PDF :67
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024