Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2018, Volume 20, Number 3, Pages 21–36
DOI: https://doi.org/10.23671/VNC.2018.3.17961
(Mi vmj662)
 

This article is cited in 1 scientific paper (total in 1 paper)

Approximative properties of special series in Meixner polynomials

R. M. Gadzhimirzaev

Daghestan Scientific Centre of RAS, 45 M. Gadjieva st., Makhachkala 367025, Russia
Full-text PDF (298 kB) Citations (1)
References:
Abstract: In this article the new special series in the modified Meixner polynomials $M_{n,N}^\alpha(x)=M_n^\alpha(Nx)$ are constructed. For $\alpha>-1$, these polynomials constitute an orthogonal system with a weight-function $\rho(Nx)$ on a uniform grid $\Omega_{\delta}=\{0, \delta, 2\delta, \ldots\}$, where $\delta=1/N$, $N>0$. Special series in Meixner polynomials $M_{n,N}^\alpha(x)$ appeared as a natural (and alternative to Fourier–Meixner series) apparatus for the simultaneous approximation of a discrete function $f$ given on a uniform grid $\Omega_\delta$ and its finite differences $\Delta^\nu_\delta f$. The main attention is paid to the study of the approximative properties of the partial sums of the series under consideration. In particular, a pointwise estimate for the Lebesgue function of mentioned partial sums is obtained. It should also be noted that new special series, unlike Fourier–Meixner series, have the property that their partial sums coincide with the values of the original function in the points $0, \delta, \ldots, (r-1)\delta$.
Key words: Meixner polynomials, approximative properties, Fourier series, special series, Lebesgue function.
Received: 17.01.2017
Bibliographic databases:
Document Type: Article
UDC: 517.521
MSC: 41A10
Language: Russian
Citation: R. M. Gadzhimirzaev, “Approximative properties of special series in Meixner polynomials”, Vladikavkaz. Mat. Zh., 20:3 (2018), 21–36
Citation in format AMSBIB
\Bibitem{Gad18}
\by R.~M.~Gadzhimirzaev
\paper Approximative properties of special series in Meixner polynomials
\jour Vladikavkaz. Mat. Zh.
\yr 2018
\vol 20
\issue 3
\pages 21--36
\mathnet{http://mi.mathnet.ru/vmj662}
\crossref{https://doi.org/10.23671/VNC.2018.3.17961}
\elib{https://elibrary.ru/item.asp?id=36321747}
Linking options:
  • https://www.mathnet.ru/eng/vmj662
  • https://www.mathnet.ru/eng/vmj/v20/i3/p21
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:256
    Full-text PDF :68
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024