Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2018, Volume 20, Number 2, Pages 57–61
DOI: https://doi.org/10.23671/VNC.2018.2.14721
(Mi vmj653)
 

This article is cited in 1 scientific paper (total in 1 paper)

An embedding theorem for an elementary net

N. A. Dzhusoevaa, S. Yu. Itarovaa, V. A. Koibaevba

a North-Ossetian State University
b Southern Mathematical Institute VSC RAS
Full-text PDF (222 kB) Citations (1)
References:
Abstract: Let $\Lambda$ be a commutative unital ring and $n\in\Bbb{N}$, $n\geq 2$. A set $\sigma = (\sigma_{ij})$, $1\leq{i, j} \leq{n}, $ of additive subgroups $\sigma_{ij}$ of $\Lambda$ is said to be a net or a carpet of order $n$ over the ring $\Lambda$ if $\sigma_{ir} \sigma_{rj} \subseteq{\sigma_{ij}}$ for all $i$, $r$, $j$. A net without diagonal is called an elementary net. An elementary net $\sigma=(\sigma_{ij})$, $1\leq{i\neq{j} \leq{n}}$, is said to be complemented (to a full net), if for some additive subgroups (subrings) $\sigma_{ii}$ of $\Lambda$ the matrix (with the diagonal) $\sigma = (\sigma_{ij})$, $1\leq{i,j}\leq{n}$ is a full net. Assume that $\sigma = (\sigma_{ij})$ is an elementary net over the ring $\Lambda$ of the order $n$. Consider a set $\omega = (\omega_{ij})$ of additive subgroups $\omega_{ij}$ of the ring $\Lambda$, where $i\neq{j}$ defined by the rule $\omega_{ij}= \sum_{k=1}^{n}\sigma_{ik}\sigma_{kj},$ $k\neq i;\ k\neq j$. The set $\omega = (\omega_{ij})$ of elementary subgroups $\omega_{ij}$ of the ring $\Lambda$ is an elementary net called an elementary derived net. An elementary net $\omega$ can be completed to a full net by the standard way. In this article we propose a second way to complete an elementary net to a full net. The notion of a net $\Omega=(\Omega_{ij})$ associated with an elementary group $E(\sigma)$ is also introduced. The following theorem is the main result of the paper: An elementary net $\sigma$ generates an elementary derived net $\omega=(\omega_{ij})$ and a net $\Omega=(\Omega_{ij})$ associated with the elementary group $E(\sigma)$ such that $\omega\subseteq \sigma \subseteq \Omega$. If $\omega=(\omega_{ij})$ is completed with a diagonal to the full net in the standard way, then for all $r$ and $i\neq j$ we have $\omega_{ir}\Omega_{rj} \subseteq \omega_{ij}$ and $\Omega_{ir}\omega_{rj} \subseteq \omega_{ij}$. If $\omega=(\omega_{ij})$ is completed with a diagonal to the full net in the second way then the inclusions are valid for all $i$, $r$, $j$.
Key words: nets, elementary nets, net groups, derivative nets, elementary net groups, transvections.
Received: 24.01.2018
Bibliographic databases:
Document Type: Article
UDC: 512.5
Language: Russian
Citation: N. A. Dzhusoeva, S. Yu. Itarova, V. A. Koibaev, “An embedding theorem for an elementary net”, Vladikavkaz. Mat. Zh., 20:2 (2018), 57–61
Citation in format AMSBIB
\Bibitem{DzhItaKoi18}
\by N.~A.~Dzhusoeva, S.~Yu.~Itarova, V.~A.~Koibaev
\paper An embedding theorem for an elementary net
\jour Vladikavkaz. Mat. Zh.
\yr 2018
\vol 20
\issue 2
\pages 57--61
\mathnet{http://mi.mathnet.ru/vmj653}
\crossref{https://doi.org/10.23671/VNC.2018.2.14721}
\elib{https://elibrary.ru/item.asp?id=35258717}
Linking options:
  • https://www.mathnet.ru/eng/vmj653
  • https://www.mathnet.ru/eng/vmj/v20/i2/p57
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:232
    Full-text PDF :57
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024