Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2018, Volume 20, Number 1, Pages 61–68
DOI: https://doi.org/10.23671/VNC.2018.1.11398
(Mi vmj646)
 

Geometric characterization of real JBW-factors

M. M. Ibragimova, K. K. Kudajbergenova, Zh. H. Sejpullaevb

a Karakalpak state university named after Berdakh, 1 Academician Ch. Abdirov str., Nukus, 230113, Uzbekistan
b V. I. Romanovski Institute of Mathematics, 81 Mirzo Ulughbek str., Tashkent, 100170, Uzbekistan
References:
Abstract: One of the interesting problems in the theory of operator algebras is the geometric characterization of the state spaces of Jordan operator algebras. In the mid-1980s, Y. Friedman and B. Russo introduced the co-called facially symmetric spaces. The main purpose of introducing them is the geometric characterization of predual spaces of JB*-triples that admit an algebraic structure. Many of the properties required in these characterizations are natural assumptions for the state spaces of physical systems. Such spaces are considered as a geometric model for states of quantum mechanics. Y. Fridman and B. Russo showed that the predual space of a complex von Neumann algebra and more general JBW*-triple is a neutral strongly facially symmetric space. In this connection, Y. Friedman and B. Russo mainly studied neutral facially symmetric spaces, and in these spaces they obtained results that were previously known for the aforementioned predual spaces. In 2004, M. Neal and B. Russo gave geometric characterizations of the predual spaces of complex JBW*-triples in the class of facially symmetric spaces. At the same time, the description of real JBW*-triples remains an open question. The present paper is devoted to the study of predual spaces of real JBW-factors. It is proved that the predual space of a real JBW-factor is a strongly facially symmetric space if and only if it either is abelian or is a spin-factor.
Key words: Banach space, facially symmetric space, JBW-algebra, JBW-factor, face.
Received: 05.12.2017
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: M. M. Ibragimov, K. K. Kudajbergenov, Zh. H. Sejpullaev, “Geometric characterization of real JBW-factors”, Vladikavkaz. Mat. Zh., 20:1 (2018), 61–68
Citation in format AMSBIB
\Bibitem{IbrKudSey18}
\by M.~M.~Ibragimov, K.~K.~Kudajbergenov, Zh.~H.~Sejpullaev
\paper Geometric characterization of real JBW-factors
\jour Vladikavkaz. Mat. Zh.
\yr 2018
\vol 20
\issue 1
\pages 61--68
\mathnet{http://mi.mathnet.ru/vmj646}
\crossref{https://doi.org/10.23671/VNC.2018.1.11398}
\elib{https://elibrary.ru/item.asp?id=32778496}
Linking options:
  • https://www.mathnet.ru/eng/vmj646
  • https://www.mathnet.ru/eng/vmj/v20/i1/p61
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:283
    Full-text PDF :72
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024