Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2017, Volume 19, Number 1, Pages 41–49 (Mi vmj606)  

On distribution of zeros for a class of meromorphic functions

Yu. F. Korobeĭnik

Southern Mathematical Institute of the Vladikavkaz Scientific Center of the Russian Academy of Sciences, Vladikavkaz
References:
Abstract: In this article some class $\mathcal{K}_0$ of meromorphic functions is introduced. Each function $y(z)$ from $\mathcal{K}_0$ satisfies the functional equation $y(z)=b_y(z)y(1-z)$ with its own «Riemann's multiplier» $b_y(z)$ which is a meromorphic function with real zeros and poles. All poles of an arbitrary function from $\mathcal{K}_0$ are real and belong to the interval $(\frac12,\frac12+h_1]$, $h_1=h_1(y)$. Using the theory of residues we prove some relation connecting the following magnitudes: $\mathcal{P}_y$, the sum of all orders of poles of $y \in \mathcal{K}_0$; $\mathcal{N}_y(T)$, the sum of multiplicities of all zeros of $y$ having the form $\frac12 +i\tau$, $|\tau|<T$; $\mathcal{N}_y(T,\sigma)$, the sum of multiplicities of all zeros of $y$ which lies inside the rectangle with vertices $A=\frac12-\sigma - iT$, $C=\frac12+\sigma - iT$, $D=\frac12+\sigma + iT$, $F=\frac12-\sigma + iT$. Here $T$ is a $y$-regular ordinate, that is, $y(z)$ is analytic and has no zeros on the line $\operatorname{Im} z =T$, $\operatorname{Re} z \in \mathbb{R}$, $\sigma\in (h_1,h)$, $h=h(y)$, $\sigma$ is chosen in such a manner that $y(z)\ne 0$ on the segments $[F,A]$ and $[C,D]$. The problem of finding the magnitudes of $\mathcal{P}_y$, $\mathcal{N}_y(T)$ and $\mathcal{N}_y(T,\sigma)$ with the help of corresponding characteristics of the «Riemann's multiplier» $b_y(z)$ is posed. This problem is solved in the paper for $\mathcal{P}_y$. Moreover, the obtained equality enables one to deduce a definite relation the left part of which contains the number $2\alpha_{T_0}+ 4\beta_{T_0}$ where $T_0$ is arbitrary $y$-nonregular ordinate, $\alpha_{T_0}$ is the multiplicities of all possible zero of $y$ of the form $\frac12+iT_0$, $\beta_{T_0}$ is the sum of multiplicities of all possible zeros of $y$ belonging to $\frac12+iT_0,+\infty +iT_0$. It is proved that the class $\mathcal{K}_0$ contains the Riemann's Zeta-Function.
Key words: zeros of meromorphic functions, functional equation.
Received: 23.10.2016
Document Type: Article
UDC: 517.547.2
Language: Russian
Citation: Yu. F. Korobeǐnik, “On distribution of zeros for a class of meromorphic functions”, Vladikavkaz. Mat. Zh., 19:1 (2017), 41–49
Citation in format AMSBIB
\Bibitem{Kor17}
\by Yu.~F.~Korobe{\v\i}nik
\paper On distribution of zeros for a class of meromorphic functions
\jour Vladikavkaz. Mat. Zh.
\yr 2017
\vol 19
\issue 1
\pages 41--49
\mathnet{http://mi.mathnet.ru/vmj606}
Linking options:
  • https://www.mathnet.ru/eng/vmj606
  • https://www.mathnet.ru/eng/vmj/v19/i1/p41
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:253
    Full-text PDF :92
    References:56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024