|
Vladikavkazskii Matematicheskii Zhurnal, 2017, Volume 19, Number 1, Pages 30–40
(Mi vmj605)
|
|
|
|
This article is cited in 1 scientific paper (total in 2 paper)
On combinations of the circle shifts and some one-dimensional integral operators
S. B. Klimentovab a Southern Federal University, Rostov-on-Don
b Southern Mathematical Institute of the Vladikavkaz Scientific Center of the Russian Academy of Sciences, Vladikavkaz
Abstract:
The diffeomorphism $\zeta=\zeta(e^{is})$ of the unit
circle and the operator $\Psi \varphi(t) = \frac{1}{\pi i}
\int\nolimits_{\Gamma}
\left[\frac{\zeta'(\tau)}{\zeta(\tau)-\zeta(t)} - \frac{1}{\tau-t}
\right] \varphi(\tau)d \tau$ are under consideration. The main
results can be stated as follows: If $\zeta(t) \in
C^{1,\alpha}(\Gamma)$, $0<\alpha\leqslant 1$, $\varphi(t) \in
C^{0,\beta}(\Gamma)$, $0<\beta \leqslant 1$, $\mu=\alpha+\beta\leqslant 2$,
then $\Psi \varphi (t) \in C^{\mu}(\Gamma)$ for $\mu < 1$. Moreover,
the following inequality holds:
\begin{equation*}
\|\Psi \varphi (t)\|_{C^{\mu}(\Gamma)} \leqslant {\rm const}
\|\varphi(t)\|_{C^{0,\beta}(\Gamma)},
\end{equation*}
where the constant depends on $\|\zeta\|_{C^{1,\alpha}(\Gamma)}$
only. If $\mu=1$, then $ \Psi \varphi (t) \in C^{\mu
-\varepsilon}(\Gamma)$ for all $0<\varepsilon<\mu$ and the similar
inequality holds. If $\mu>1$, then $ \Psi \varphi (t) \in C^{1,\mu
-1}(\Gamma)$, and
\begin{equation*}
\|\Psi \varphi (t)\|_{C^{1,\mu-1}(\Gamma)} \leqslant {\rm const}
\|\varphi(t)\|_{C^{0,\beta}(\Gamma)},
\end{equation*}
where the constant depends on $\|\zeta\|_{C^{1,\alpha}(\Gamma)}$
only. If $\zeta(t) \in C^{1,\alpha}(\Gamma)$, $0<\alpha\leqslant 1$,
$\varphi(t) \in C^{1,\beta}(\Gamma)$, $0<\beta \leqslant 1$, then $ \Psi
\varphi (t) \in C^{1,\alpha}(\Gamma)$, and
\begin{equation*}
\|\Psi \varphi (t)\|_{C^{1,\alpha}(\Gamma)} \leqslant \mathrm{const}\,
\|\varphi(t)\|_{C^{0,1}(\Gamma)} \leqslant \mathrm{const}\,
\|\varphi(t)\|_{C^{1,\beta}(\Gamma)},
\end{equation*}
where the constant depends on $\|\zeta\|_{C^{1,\alpha}(\Gamma)}$
only. The index $\alpha$ in the left-hand side of the last
inequality can not be improved. The appropriate example is
given.
Key words:
shift, singular integral operator.
Received: 25.10.2016
Citation:
S. B. Klimentov, “On combinations of the circle shifts and some one-dimensional integral operators”, Vladikavkaz. Mat. Zh., 19:1 (2017), 30–40
Linking options:
https://www.mathnet.ru/eng/vmj605 https://www.mathnet.ru/eng/vmj/v19/i1/p30
|
Statistics & downloads: |
Abstract page: | 309 | Full-text PDF : | 74 | References: | 65 |
|