Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2017, Volume 19, Number 1, Pages 30–40 (Mi vmj605)  

This article is cited in 1 scientific paper (total in 2 paper)

On combinations of the circle shifts and some one-dimensional integral operators

S. B. Klimentovab

a Southern Federal University, Rostov-on-Don
b Southern Mathematical Institute of the Vladikavkaz Scientific Center of the Russian Academy of Sciences, Vladikavkaz
Full-text PDF (223 kB) Citations (2)
References:
Abstract: The diffeomorphism $\zeta=\zeta(e^{is})$ of the unit circle and the operator $\Psi \varphi(t) = \frac{1}{\pi i} \int\nolimits_{\Gamma} \left[\frac{\zeta'(\tau)}{\zeta(\tau)-\zeta(t)} - \frac{1}{\tau-t} \right] \varphi(\tau)d \tau$ are under consideration. The main results can be stated as follows: If $\zeta(t) \in C^{1,\alpha}(\Gamma)$, $0<\alpha\leqslant 1$, $\varphi(t) \in C^{0,\beta}(\Gamma)$, $0<\beta \leqslant 1$, $\mu=\alpha+\beta\leqslant 2$, then $\Psi \varphi (t) \in C^{\mu}(\Gamma)$ for $\mu < 1$. Moreover, the following inequality holds:
\begin{equation*} \|\Psi \varphi (t)\|_{C^{\mu}(\Gamma)} \leqslant {\rm const} \|\varphi(t)\|_{C^{0,\beta}(\Gamma)}, \end{equation*}
where the constant depends on $\|\zeta\|_{C^{1,\alpha}(\Gamma)}$ only. If $\mu=1$, then $ \Psi \varphi (t) \in C^{\mu -\varepsilon}(\Gamma)$ for all $0<\varepsilon<\mu$ and the similar inequality holds. If $\mu>1$, then $ \Psi \varphi (t) \in C^{1,\mu -1}(\Gamma)$, and
\begin{equation*} \|\Psi \varphi (t)\|_{C^{1,\mu-1}(\Gamma)} \leqslant {\rm const} \|\varphi(t)\|_{C^{0,\beta}(\Gamma)}, \end{equation*}
where the constant depends on $\|\zeta\|_{C^{1,\alpha}(\Gamma)}$ only. If $\zeta(t) \in C^{1,\alpha}(\Gamma)$, $0<\alpha\leqslant 1$, $\varphi(t) \in C^{1,\beta}(\Gamma)$, $0<\beta \leqslant 1$, then $ \Psi \varphi (t) \in C^{1,\alpha}(\Gamma)$, and
\begin{equation*} \|\Psi \varphi (t)\|_{C^{1,\alpha}(\Gamma)} \leqslant \mathrm{const}\, \|\varphi(t)\|_{C^{0,1}(\Gamma)} \leqslant \mathrm{const}\, \|\varphi(t)\|_{C^{1,\beta}(\Gamma)}, \end{equation*}
where the constant depends on $\|\zeta\|_{C^{1,\alpha}(\Gamma)}$ only. The index $\alpha$ in the left-hand side of the last inequality can not be improved. The appropriate example is given.
Key words: shift, singular integral operator.
Received: 25.10.2016
Document Type: Article
UDC: 517.518.13+517.983.23
Language: Russian
Citation: S. B. Klimentov, “On combinations of the circle shifts and some one-dimensional integral operators”, Vladikavkaz. Mat. Zh., 19:1 (2017), 30–40
Citation in format AMSBIB
\Bibitem{Kli17}
\by S.~B.~Klimentov
\paper On combinations of the circle shifts and some one-dimensional integral operators
\jour Vladikavkaz. Mat. Zh.
\yr 2017
\vol 19
\issue 1
\pages 30--40
\mathnet{http://mi.mathnet.ru/vmj605}
Linking options:
  • https://www.mathnet.ru/eng/vmj605
  • https://www.mathnet.ru/eng/vmj/v19/i1/p30
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:309
    Full-text PDF :74
    References:65
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024