Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2017, Volume 19, Number 1, Pages 26–29 (Mi vmj604)  

Cyclical elementary nets

N. A. Dzhusoeva, R. Y. Dryaeva

North Ossetian State University after Kosta Levanovich Khetagurov, Vladikavkaz
References:
Abstract: Let $R$ be a commutative ring with the unit and $n\in\mathbb{N}$. A set $\sigma = (\sigma_{ij})$, $1\leqslant{i, j} \leqslant{n},$ of additive subgroups of the ring $R$ is a net over $R$ of order $n$, if $ \sigma_{ir} \sigma_{rj} \subseteq{\sigma_{ij}} $ for all $1\leqslant i, r, j\leqslant n$. A net which doesn't contain the diagonal is called an elementary net. An elementary net $\sigma = (\sigma_{ij}), 1\leqslant{i\neq{j} \leqslant{n}}$, is complemented, if for some additive subgroups $\sigma_{ii}$ of $R$ the set $\sigma = (\sigma_{ij}), 1\leqslant{i, j} \leqslant{n}$ is a full net. An elementary net $\sigma$ is called closed, if the elementary group $ E(\sigma) = \langle t_{ij}(\alpha) : \alpha\in \sigma_{ij}, 1\leqslant{i\neq{j}} \leqslant{n}\rangle $ doesn't contain elementary transvections. It is proved that the cyclic elementary odd-order nets are complemented. In particular, all such nets are closed. It is also shown that for every odd $n\in\mathbb{N}$ there exists an elementary cyclic net which is not complemented.
Key words: intermediate subgroup, non-split maximal torus, net, cyclic net, net group, elementary group, transvection.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 115033020013
Received: 14.03.2016
Document Type: Article
UDC: 519.46
Language: Russian
Citation: N. A. Dzhusoeva, R. Y. Dryaeva, “Cyclical elementary nets”, Vladikavkaz. Mat. Zh., 19:1 (2017), 26–29
Citation in format AMSBIB
\Bibitem{DzhDry17}
\by N.~A.~Dzhusoeva, R.~Y.~Dryaeva
\paper Cyclical elementary nets
\jour Vladikavkaz. Mat. Zh.
\yr 2017
\vol 19
\issue 1
\pages 26--29
\mathnet{http://mi.mathnet.ru/vmj604}
Linking options:
  • https://www.mathnet.ru/eng/vmj604
  • https://www.mathnet.ru/eng/vmj/v19/i1/p26
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:2019
    Full-text PDF :80
    References:80
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024