Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2016, Volume 18, Number 3, Pages 31–34 (Mi vmj587)  

An elementary net associated with the elementary group

R. Y. Dryaevaa, V. A. Koibaevab

a North Ossetian State University after Kosta Levanovich Khetagurov, Vladikavkaz, Russia
b Southern Mathematical Institute of the Vladikavkaz Scientific Center of the Russian Academy of Sciences, Vladikavkaz, Russia
References:
Abstract: Let $R$ be an arbitrary commutative ring with identity, $n$ be a positive integer, $n\geq2$. The set $\sigma=(\sigma_{ij})$, $1\leq i,j\leq n$, of additive subgroups of the ring $R$ is called a net (or carpet) over the ring $R$ of order $n$, if the inclusions $\sigma_{ir}\sigma_ {rj}\subseteq\sigma_{ij}$ hold for all $i,r,j$. The net without the diagonal, is called an elementary net. The elementary net $\sigma=(\sigma_{ij})$, $1\leq i\neq j\leq n$, is called complemented, if for some additive subgroups $\sigma_{ii}$ of the ring $R$ the set $\sigma=(\sigma_ {ij})$, $1\leq i,j\leq n$ is a (full) net. The elementary net $\sigma=(\sigma_{ij})$ is complemented if and only if the inclusions $\sigma_{ij}\sigma_{ji}\sigma_{ij}\subseteq\sigma_{ij}$ hold for any $i\neq j$. Some examples of not complemented elementary nets are well known. With every net $\sigma$ can be associated a group $G(\sigma)$ called a net group. This groups are important for the investigation of different classes of groups.
It is proved in this work that for every elementary net $\sigma$ there exists another elementary net $\Omega$ associated with the elementary group $E(\sigma)$. It is also proved that an elementary net $\Omega$ associated with the elementary group $E(\sigma)$ is the smallest elementary net that contains the elementary net $\sigma$.
Key words: carpet, elementary carpet, net, elementary net, net group, elementary group, transvection.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 115033020013
Received: 21.12.2015
Document Type: Article
UDC: 512.5
Language: Russian
Citation: R. Y. Dryaeva, V. A. Koibaev, “An elementary net associated with the elementary group”, Vladikavkaz. Mat. Zh., 18:3 (2016), 31–34
Citation in format AMSBIB
\Bibitem{DryKoi16}
\by R.~Y.~Dryaeva, V.~A.~Koibaev
\paper An elementary net associated with the elementary group
\jour Vladikavkaz. Mat. Zh.
\yr 2016
\vol 18
\issue 3
\pages 31--34
\mathnet{http://mi.mathnet.ru/vmj587}
Linking options:
  • https://www.mathnet.ru/eng/vmj587
  • https://www.mathnet.ru/eng/vmj/v18/i3/p31
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:358
    Full-text PDF :100
    References:93
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024