Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2016, Volume 18, Number 1, Pages 51–62 (Mi vmj572)  

This article is cited in 5 scientific papers (total in 5 papers)

Characterization and multiplicative representation of homogeneous disjointness preserving polynomials

Z. A. Kusraeva

Southern Mathematical Institute of the Vladikavkaz Scientific Center of the Russian Academy of Sciences, Vladikavkaz, Russia
Full-text PDF (323 kB) Citations (5)
References:
Abstract: Let $E$ and $F$ be vector lattices and $P\colon E\to F$ an order bounded orthogonally additive (i.e. $|x|\wedge|y|=0$ implies $P(x+y)=P(x)+P(y)$ for all $x,y\in E$) $s$-homogeneous polynomial. $P$ is said to be disjointness preserving if its corresponding symmetric $s$-linear operator from $E^s$ to $F$ is disjointness preserving in each variable. The main results of the paper read as follows:
Theorem 3.9. The following are equivalent: (1) $P$ is disjointness preserving; (2) $\hat d^nP(x)(y)=0$ and $Px\perp Py$ for all $x,y\in E$, $x\perp y$, and $1\leq n<s$; (3) $P$ is orthogonally additive and $x\perp y$ implies $Px\perp Py$ for all $x,y\in E$; (4) {\it there exist a vector lattice $G$ and lattice homomorphisms $S_1,S_2\colon E \to G$ such that $G^{s\scriptscriptstyle\odot}\subset F$, $S_1(E)\perp S_2(E)$, and $Px=(S_1x)^{s\scriptscriptstyle\odot}-(S_2x)^{s\scriptscriptstyle\odot}$ for all $x\in E$}; (5) {\it there exists an order bounded disjointness preserving linear operator $T:E^{s\scriptscriptstyle\odot}\to F$ such that $Px=T(x^{s\scriptscriptstyle\odot})$ for all $x\in E$}.
Theorem 4.7. {\it Let $E$ and $F$ be Dedekind complete vector lattices. There exists a partition of unity $(\rho_\xi)_{\xi\in\Xi}$ in the Boolean algebra of band projections $\mathfrak P(F)$ and a family $(e_\xi)_{\xi\in\Xi}$ in $E_+$ such that $P(x)=o$-$\sum_{\xi\in\Xi}W\circ\rho_\xi S(x/e_\xi)^{s\scriptscriptstyle\odot}$ $(x\in E)$, where $S$ is the shift of $P$ and $W\colon\mathscr F\to\mathscr F$ is the orthomorphism multiplication by $o$-$\sum_{\xi\in\Xi}\rho_\xi P(e_\xi)$.
Key words: power of a vector lattice, homogeneous polynomial, disjointness preserving polynomial, orthogonal additivity, lattice polymorphism, multiplicative representation.
Funding agency Grant number
Russian Foundation for Basic Research 15-51-53119 ГФЕН-а
Received: 13.01.2016
Document Type: Article
UDC: 517.98
MSC: 46A40, 47H60, 47H07
Language: Russian
Citation: Z. A. Kusraeva, “Characterization and multiplicative representation of homogeneous disjointness preserving polynomials”, Vladikavkaz. Mat. Zh., 18:1 (2016), 51–62
Citation in format AMSBIB
\Bibitem{Kus16}
\by Z.~A.~Kusraeva
\paper Characterization and multiplicative representation of homogeneous disjointness preserving polynomials
\jour Vladikavkaz. Mat. Zh.
\yr 2016
\vol 18
\issue 1
\pages 51--62
\mathnet{http://mi.mathnet.ru/vmj572}
Linking options:
  • https://www.mathnet.ru/eng/vmj572
  • https://www.mathnet.ru/eng/vmj/v18/i1/p51
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:303
    Full-text PDF :78
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024