Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2015, Volume 17, Number 2, Pages 16–21 (Mi vmj539)  

This article is cited in 1 scientific paper (total in 1 paper)

On locally finite $\pi$-separable groups

A. Kh. Zhurtov, Z. B. Seljaeva

Kabardino-Balkar State University, Nal'chik, Russia
Full-text PDF (203 kB) Citations (1)
References:
Abstract: It is shown that the $\pi$-length of a locally finite $\pi$-separable group $G$ is bounded by a natural $m$ if the $\pi$-length of every finite subgroup of $G$ is bounded by $m$.
Key words: locally finite group, $\pi$-separable group, $\pi$-length of the group.
Received: 24.04.2015
Document Type: Article
UDC: 512.542
Language: Russian
Citation: A. Kh. Zhurtov, Z. B. Seljaeva, “On locally finite $\pi$-separable groups”, Vladikavkaz. Mat. Zh., 17:2 (2015), 16–21
Citation in format AMSBIB
\Bibitem{ZhuSel15}
\by A.~Kh.~Zhurtov, Z.~B.~Seljaeva
\paper On locally finite $\pi$-separable groups
\jour Vladikavkaz. Mat. Zh.
\yr 2015
\vol 17
\issue 2
\pages 16--21
\mathnet{http://mi.mathnet.ru/vmj539}
Linking options:
  • https://www.mathnet.ru/eng/vmj539
  • https://www.mathnet.ru/eng/vmj/v17/i2/p16
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:300
    Full-text PDF :83
    References:65
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024