Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2015, Volume 17, Number 2, Pages 12–15 (Mi vmj538)  

The net and elementary net group associated with non-split maximal torus

N. A. Djusoeva

North-Ossetia State University, Vladikavkaz, Russia
References:
Abstract: The elements of matrixes of a non-split maximal torus $T=T(d)$ (associated with a radical extension $k(\sqrt[n]d)$ of degree $n$ of the ground field $k$) generate some subring $R(d)$ of the field $k$. Let $R$ be an intermediate subring, $R(d)\subseteq R\subseteq k$, $d\in R$, $A_1\subseteq\dots\subseteq A_n$ be a chain of ideals of the ring $R$, and $dA_n\subseteq A_1$. By $\sigma=(\sigma_{ij})$ we denote the net of ideals defined by $\sigma_{ij}=A_{i+1-j}$ with $j\leq i$ and $\sigma_{ij}=dA_{n+i+1-j}$ with $j\geq i+1$. By $G(\sigma)$ and $E(\sigma)$ we denote the net and the elementary net group, respectively. It is proved, that $TG(\sigma)$ and $TE(\sigma)$ are intermediate subgroups of $GL(n, k)$ containing the torus $T$.
Key words: overgroup, intermediate subgroup, elementary group, non-split maximal torus, transvection.
Received: 12.05.2015
Document Type: Article
UDC: 512.5
Language: Russian
Citation: N. A. Djusoeva, “The net and elementary net group associated with non-split maximal torus”, Vladikavkaz. Mat. Zh., 17:2 (2015), 12–15
Citation in format AMSBIB
\Bibitem{Dzh15}
\by N.~A.~Djusoeva
\paper The net and elementary net group associated with non-split maximal torus
\jour Vladikavkaz. Mat. Zh.
\yr 2015
\vol 17
\issue 2
\pages 12--15
\mathnet{http://mi.mathnet.ru/vmj538}
Linking options:
  • https://www.mathnet.ru/eng/vmj538
  • https://www.mathnet.ru/eng/vmj/v17/i2/p12
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024