Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2014, Volume 16, Number 3, Pages 3–8 (Mi vmj508)  

Transvection modules in the overgroups of a non-split maximal torus

N. A. Dzhusoevaa, V. A. Koibaevab

a North-Ossetia State University, Vladikavkaz, Russia
b South Mathematical Institute of VSC RAS, Vladikavkaz, Russia
References:
Abstract: The aim of this article is to investigate the modules of transvections and rings of multipliers subgroups of the general linear group $G=GL(n,k)$ of degree $n$ over a field $k$, containing non-split maximal torus $T=T(d)$, associated with a radical extension of $k(\sqrt[n]d)$ of the degree $n$ of the ground field $k$ of an odd characteristic (minisotropic torus). We find a full list of $2\cdot[(\frac{n-1}2)^2]$ relations ($[\cdot]$ – integer part) of the modules of transvections. We prove that all ring of multipliers coincide, and all modules transvections are ideals of the ring of multipliers. All results were proved by the assumption that the ground field $k$ is the field of fractions of a principal ideal domain.
Key words: overgroups, intermediate subgroups, non-split maximal torus, transvection, module transvections.
Received: 16.06.2014
Document Type: Article
UDC: 512.5
Language: Russian
Citation: N. A. Dzhusoeva, V. A. Koibaev, “Transvection modules in the overgroups of a non-split maximal torus”, Vladikavkaz. Mat. Zh., 16:3 (2014), 3–8
Citation in format AMSBIB
\Bibitem{DzhKoi14}
\by N.~A.~Dzhusoeva, V.~A.~Koibaev
\paper Transvection modules in the overgroups of a~non-split maximal torus
\jour Vladikavkaz. Mat. Zh.
\yr 2014
\vol 16
\issue 3
\pages 3--8
\mathnet{http://mi.mathnet.ru/vmj508}
Linking options:
  • https://www.mathnet.ru/eng/vmj508
  • https://www.mathnet.ru/eng/vmj/v16/i3/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:224
    Full-text PDF :63
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024