Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2010, Volume 12, Number 1, Pages 53–67 (Mi vmj5)  

This article is cited in 1 scientific paper (total in 1 paper)

Justification of the principle of Saint Venant for a naturally twisted rod

Yu. A. Ustinovab

a Southern Federal University
b South Mathematical Institute of VSC RAS
Full-text PDF (187 kB) Citations (1)
References:
Abstract: The paper gives the mathematical evidence of the principle of Saint-Venant for a naturally twisted rod.
Key words: principle of Saint-Venant, spectral problem, eigenvalues, elementary solutions, generalized orthogonality.
Received: 12.04.2009
Document Type: Article
Language: Russian
Citation: Yu. A. Ustinov, “Justification of the principle of Saint Venant for a naturally twisted rod”, Vladikavkaz. Mat. Zh., 12:1 (2010), 53–67
Citation in format AMSBIB
\Bibitem{Ust10}
\by Yu.~A.~Ustinov
\paper Justification of the principle of Saint Venant for a~naturally twisted rod
\jour Vladikavkaz. Mat. Zh.
\yr 2010
\vol 12
\issue 1
\pages 53--67
\mathnet{http://mi.mathnet.ru/vmj5}
Linking options:
  • https://www.mathnet.ru/eng/vmj5
  • https://www.mathnet.ru/eng/vmj/v12/i1/p53
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:294
    Full-text PDF :176
    References:40
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024