Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2014, Volume 16, Number 1, Pages 12–23 (Mi vmj491)  

Estimates for some potential type operators whose kernels have singularities on spheres

M. N. Gurovab, V. A. Noginba

a Southern Federal University, Rostov-on-Don, Russia
b South Mathematical Institute of VSC RAS, Vladikavkaz, Russia
References:
Abstract: Multidimensional convolution operators whose kernels have power-type singularities on a finite union of spheres in $\mathbb R^n$ are studied on Hardy spaces $H^p$, $0<p<\infty$. Necessary and sufficient conditions are obtained for such operators to be bounded from $H^p$ into the Holder space $\Lambda_s$, from $H^p$ into the Sobolev space $L_k^\infty$, and from BMO into $\Lambda_s$.
Key words: potential, Hardy spaces, space of Hölder functions, bounded mean oscillation.
Received: 17.02.2013
Document Type: Article
UDC: 517.983.2
Language: Russian
Citation: M. N. Gurov, V. A. Nogin, “Estimates for some potential type operators whose kernels have singularities on spheres”, Vladikavkaz. Mat. Zh., 16:1 (2014), 12–23
Citation in format AMSBIB
\Bibitem{GurNog14}
\by M.~N.~Gurov, V.~A.~Nogin
\paper Estimates for some potential type operators whose kernels have singularities on spheres
\jour Vladikavkaz. Mat. Zh.
\yr 2014
\vol 16
\issue 1
\pages 12--23
\mathnet{http://mi.mathnet.ru/vmj491}
Linking options:
  • https://www.mathnet.ru/eng/vmj491
  • https://www.mathnet.ru/eng/vmj/v16/i1/p12
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:264
    Full-text PDF :80
    References:66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024