Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2012, Volume 14, Number 3, Pages 63–73 (Mi vmj428)  

This article is cited in 4 scientific papers (total in 4 papers)

The Riemann–Hhilbert boundary value problem for generalized analytic functions in Smirnov classes

S. B. Klimentovab

a Southern Federal University, Russia, Rostov-on-Don
b South Mathematical Institute of VSC RAS, Russia, Vladikavkaz
Full-text PDF (166 kB) Citations (4)
References:
Abstract: Under study is the Riemann–Hilbert boundary value problem for generalized analytic functions of a Smirnov class in a bounded simply connected domain whose boundary is a Lyapunov curve or a Radon curve without cusps. The coefficient of the boundary value condition is assumed continuous and perturbed by a bounded measurable function or continuous and perturbed by a bounded variation function. The paper uses the special representation for generalized analytic functions of Smirnov classes from the author's paper [16], which reduces the problem to that for holomorphic functions. The problem for the holomorphic functions was under study in the author's papers [1,2].
Key words: Riemann–Hilbert boundary value problem, generalized analytic functions, Smirnov classes.
Received: 28.08.2011
Document Type: Article
UDC: 517.518.234+517.548.3
Language: Russian
Citation: S. B. Klimentov, “The Riemann–Hhilbert boundary value problem for generalized analytic functions in Smirnov classes”, Vladikavkaz. Mat. Zh., 14:3 (2012), 63–73
Citation in format AMSBIB
\Bibitem{Kli12}
\by S.~B.~Klimentov
\paper The Riemann--Hhilbert boundary value problem for generalized analytic functions in Smirnov classes
\jour Vladikavkaz. Mat. Zh.
\yr 2012
\vol 14
\issue 3
\pages 63--73
\mathnet{http://mi.mathnet.ru/vmj428}
Linking options:
  • https://www.mathnet.ru/eng/vmj428
  • https://www.mathnet.ru/eng/vmj/v14/i3/p63
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:476
    Full-text PDF :167
    References:81
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024