Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2009, Volume 11, Number 4, Pages 7–10 (Mi vmj41)  

On some properties of extensions of commutative unital rings

P. V. Danchev

Plovdiv State University "Paissii Hilendarski", Plovdiv, Bulgaria
References:
Abstract: We find necessary and sufficient conditions for the ring $R[\alpha]$ to be either a field or a domain whenever $R$ is a commutative ring with 1 and $\alpha$ is an algebraic element over $R$. This continues the studies started by Nachev (Compt. Rend. Acad. Bulg. Sci., 2004) and (Commun. Alg., 2005) as well as their generalization due to Mihovski (Compt. Rend. Acad. Bulg. Sci., 2005).
Key words: fields, domains, Noetherian rings, Arthinian rings, maximal ideals, prime ideals, units, zero divisors, regular elements, roots, polynomials.
Received: 31.10.2008
Document Type: Article
UDC: 512.742
MSC: 13B25, 13B02, 16N40
Language: English
Citation: P. V. Danchev, “On some properties of extensions of commutative unital rings”, Vladikavkaz. Mat. Zh., 11:4 (2009), 7–10
Citation in format AMSBIB
\Bibitem{Dan09}
\by P.~V.~Danchev
\paper On some properties of extensions of commutative unital rings
\jour Vladikavkaz. Mat. Zh.
\yr 2009
\vol 11
\issue 4
\pages 7--10
\mathnet{http://mi.mathnet.ru/vmj41}
Linking options:
  • https://www.mathnet.ru/eng/vmj41
  • https://www.mathnet.ru/eng/vmj/v11/i4/p7
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024