Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2011, Volume 13, Number 3, Pages 36–41 (Mi vmj392)  

Closed pairs

V. A. Koibaevab

a North-Ossetia State University, Vladikavkaz, Russia
b South Mathematical Institute of VSC RAS, Vladikavkaz, Russia
References:
Abstract: This is a study of closed pairs of abelian groups (closed elementary nets of degree 2). If the elementary group $E(\sigma)$ does not contain new elementary transvections, then an elementary net $\sigma$ (the net without the diagonal) is called closed. Closed pairs we construct from the subgroup of a polynomial ring. Let $R_1[x]$ – the ring of polynomials (of variable $x$ with coefficients in a domain $R$) with zero constant term. We prove the following result.
Theorem. Let $A,B$ – additive subgroups of $R_1[x]$. Then the pair $(A,B)$ is closed. In other words, if $t_{12}(\beta)$ or $t_{21}(\alpha)$ is contained in subgroup $\langle t_{21}(A),t_{12}(B)\rangle$, then $\beta\in B$, $\alpha\in A$.
Key words: net, elementary net, closed net, net groups, elementary group, transvection.
Received: 14.08.2011
Document Type: Article
UDC: 519.46
Language: Russian
Citation: V. A. Koibaev, “Closed pairs”, Vladikavkaz. Mat. Zh., 13:3 (2011), 36–41
Citation in format AMSBIB
\Bibitem{Koi11}
\by V.~A.~Koibaev
\paper Closed pairs
\jour Vladikavkaz. Mat. Zh.
\yr 2011
\vol 13
\issue 3
\pages 36--41
\mathnet{http://mi.mathnet.ru/vmj392}
Linking options:
  • https://www.mathnet.ru/eng/vmj392
  • https://www.mathnet.ru/eng/vmj/v13/i3/p36
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:345
    Full-text PDF :97
    References:67
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024