Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2009, Volume 11, Number 3, Pages 8–9 (Mi vmj33)  

This article is cited in 2 scientific papers (total in 2 papers)

Weakly $\aleph_1$-separable quasi-complete abelian $p$-groups are bounded

P. V. Danchev

Plovdiv State University "Paissii Hilendarski", Plovdiv, Bulgaria
Full-text PDF (88 kB) Citations (2)
References:
Abstract: We prove that each weakly $\aleph_1$-separable quasi-complete abelian $p$-group is bounded, thus extending recent results of ours in (Vladikavkaz Math. J., 2007 and 2008).
Key words: weakly $\aleph_1$-separable groups, quasi-complete groups, torsion-complete groups, basic subgroups, bounded groups.
Received: 26.05.2008
Bibliographic databases:
Document Type: Article
UDC: 512.742
MSC: 20K10
Language: English
Citation: P. V. Danchev, “Weakly $\aleph_1$-separable quasi-complete abelian $p$-groups are bounded”, Vladikavkaz. Mat. Zh., 11:3 (2009), 8–9
Citation in format AMSBIB
\Bibitem{Dan09}
\by P.~V.~Danchev
\paper Weakly $\aleph_1$-separable quasi-complete abelian $p$-groups are bounded
\jour Vladikavkaz. Mat. Zh.
\yr 2009
\vol 11
\issue 3
\pages 8--9
\mathnet{http://mi.mathnet.ru/vmj33}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2559075}
\elib{https://elibrary.ru/item.asp?id=12890851}
Linking options:
  • https://www.mathnet.ru/eng/vmj33
  • https://www.mathnet.ru/eng/vmj/v11/i3/p8
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:623
    Full-text PDF :89
    References:44
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024