Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2009, Volume 11, Number 2, Pages 19–26 (Mi vmj25)  

This article is cited in 3 scientific papers (total in 3 papers)

On Riesz spaces with $b$-property and $b$-weakly compact operators

Ş. Alpaya, B. Altinb

a Department of Mathematics, Middle East Technical University, Ankara, Turkiye
b Department of Mathematics, Gazi Universitesi, Besevler-Ankara, Turkiye
Full-text PDF (140 kB) Citations (3)
References:
Abstract: An operator $T\colon E\to X$ between a Banach lattice $E$ and a Banach space $X$ is called $b$-weakly compact if $T(B)$ is relatively weakly compact for each $b$-bounded set $B$ in $E$. We characterize $b$-weakly compact operators among $o$-weakly compact operators. We show summing operators are $b$-weakly compact and discuss relation between Dunford–Pettis and $b$-weakly compact operators. We give necessary conditions for $b$-weakly compact operators to be compact and give characterizations of $K\!B$-spaces in terms of $b$-weakly compact operators defined on them.
Key words: $b$-bounded sets, $b$-weakly compact operator, $K\!B$-spaces.
Received: 04.02.2009
Bibliographic databases:
Document Type: Article
UDC: 517.98
MSC: 46A40, 46B40, 46B42
Language: English
Citation: Ş. Alpay, B. Altin, “On Riesz spaces with $b$-property and $b$-weakly compact operators”, Vladikavkaz. Mat. Zh., 11:2 (2009), 19–26
Citation in format AMSBIB
\Bibitem{AlpAlt09}
\by \c S.~Alpay, B.~Altin
\paper On Riesz spaces with $b$-property and $b$-weakly compact operators
\jour Vladikavkaz. Mat. Zh.
\yr 2009
\vol 11
\issue 2
\pages 19--26
\mathnet{http://mi.mathnet.ru/vmj25}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2529405}
Linking options:
  • https://www.mathnet.ru/eng/vmj25
  • https://www.mathnet.ru/eng/vmj/v11/i2/p19
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024